Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/55875
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPanigrahi, Puspamitraen
dc.contributor.authorDesai, Manishen
dc.contributor.authorAhuja, Rajeeven
dc.contributor.authorHussain, Tanveeren
dc.date.accessioned2023-08-28T00:28:00Z-
dc.date.available2023-08-28T00:28:00Z-
dc.date.issued2022-11-06-
dc.identifier.citationFlatChem, v.36, p. 1-10en
dc.identifier.issn2452-2627en
dc.identifier.urihttps://hdl.handle.net/1959.11/55875-
dc.description.abstract<p>In pursuit of developing next-generation energy storage systems, there has been increasing effort in multivalent rechargeable batteries, such as magnesium-ion batteries (MgIBs). Non-toxicity, earth abundance, and high storage capacity due to their divalent nature make MgIBs an ideal alternative to the existing lithium-ion batteries (LIBs). However, exploring efficient electrode materials capable of storing large quantities of Mg ions is one of the biggest challenges in actualizing MgIBs. Here first-principles density functional theory (DFT) simulations are employed to explore the potential of Si<sub>2</sub>BN monolayers as a novel anode material for MgIBs. We find that under the maximum coverage effect, the stackedSi<sub>2</sub>BN could attain a specific capacity of 359.94 mAh g−1, which further enhances to 1418.45 mAh g−1 with a defect concentration of 12 %. The open-circuit voltages fall in the ranges of 0.42–0.46 V and 0.88–0.98 V for the pristine and defected Si<sub>2</sub>BN, respectively. Diffusion barrier calculations reveal that Mg ions diffuse 125 times faster on pristine Si<sub>2</sub>BN than the defected one. Our simulations determine that the electronic structures, binding mechanism, equilibrium cell voltages, ionic mobilities, and thermal stabilities of stacked Si<sub>2</sub>BN make it an excellent anode material for MgIBs.</p>en
dc.languageenen
dc.publisherElsevier BVen
dc.relation.ispartofFlatChemen
dc.titleStacked Si2BN monolayers as ultra-high-capacity anode material for divalent Mg-ion batteriesen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.flatc.2022.100444en
local.contributor.firstnamePuspamitraen
local.contributor.firstnameManishen
local.contributor.firstnameRajeeven
local.contributor.firstnameTanveeren
local.profile.schoolSchool of Science and Technologyen
local.profile.emailthussai3@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeThe Netherlandsen
local.identifier.runningnumber100444en
local.format.startpage1en
local.format.endpage10en
local.peerreviewedYesen
local.identifier.volume36en
local.contributor.lastnamePanigrahien
local.contributor.lastnameDesaien
local.contributor.lastnameAhujaen
local.contributor.lastnameHussainen
dc.identifier.staffune-id:thussai3en
local.profile.orcid0000-0003-1973-4584en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/55875en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleStacked Si2BN monolayers as ultra-high-capacity anode material for divalent Mg-ion batteriesen
local.relation.fundingsourcenoteP.P. is indebted to the CENCON for financial support. The authors thank SERB-TARE (TAR/2018/000381) funding for supporting this project. R.A. thanks the Swedish Research Council (VR-2016-06014 and VR-2020-04410) for financial support.en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorPanigrahi, Puspamitraen
local.search.authorDesai, Manishen
local.search.authorAhuja, Rajeeven
local.search.authorHussain, Tanveeren
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2022en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/c8c766fb-e30a-4e41-a533-0fe938420617en
local.subject.for2020340799 Theoretical and computational chemistry not elsewhere classifieden
local.subject.for2020340701 Computational chemistryen
local.subject.seo2020170301 Battery storageen
local.subject.seo2020170899 Renewable energy not elsewhere classifieden
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeUNE Affiliationen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.