Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/55872
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hussain, Tanveer | en |
dc.contributor.author | Kaewmaraya, Thanayut | en |
dc.contributor.author | Hu, Zhe | en |
dc.contributor.author | Zhao, Xiu Song | en |
dc.date.accessioned | 2023-08-27T22:55:23Z | - |
dc.date.available | 2023-08-27T22:55:23Z | - |
dc.date.issued | 2022-08-26 | - |
dc.identifier.citation | ACS Applied Nano Materials, 5(9), p. 12637-12645 | en |
dc.identifier.issn | 2574-0970 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/55872 | - |
dc.description.abstract | <p>Room-temperature sodium–sulfur batteries (RT-Na<sub>S</sub>B<sub>s</sub>) are the evolving candidates for large-scale stationary storage because of their major benefits including double-electron redox process and the natural abundance of sodium and sulfur resources. However, their practical applications have been hampered by the poor cycling stability due to the shuttle effect. This work aims at understanding the role of heteroatom-functionalized nanoporous graphene (NPG) in preventing the shuttle effect. The density functional theory method was used to unravel important properties associated with polysulfide–NPG interactions, including binding energy, electronic density of states, charge transfer mechanism, and dissociative energy barriers of the polysulfides. The findings reveal that oxygen- and nitrogen-functionalized NPG can effectively present the shuttle effect by chemically binding to sodium polysulfides (Na<sub>2</sub>S<sub>n</sub>) with a binding energy stronger than that between Na<sub>2</sub>S<sub>n</sub> and the common electrolyte solvents. The chemical adsorption of Na<sub>2</sub>S<sub>n</sub> on the functionalized NPG causes a semiconductor-to-metal transition, benefiting the electrical conductivity. Moreover, the functionalized NPG lowers the Na<sub>2</sub>S dissociation energy to substantially form NaS and Na, which serves as a catalyst for enhancing the redox reactions between Na and S.</p> | en |
dc.language | en | en |
dc.publisher | American Chemical Society | en |
dc.relation.ispartof | ACS Applied Nano Materials | en |
dc.title | Efficient Control of the Shuttle Effect in Sodium–Sulfur Batteries with Functionalized Nanoporous Graphenes | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1021/acsanm.2c02405 | en |
local.contributor.firstname | Tanveer | en |
local.contributor.firstname | Thanayut | en |
local.contributor.firstname | Zhe | en |
local.contributor.firstname | Xiu Song | en |
local.relation.isfundedby | ARC | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | thussai3@une.edu.au | en |
local.output.category | C1 | en |
local.grant.number | FL170100101 (ARC) | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | United States of America | en |
local.format.startpage | 12637 | en |
local.format.endpage | 12645 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 5 | en |
local.identifier.issue | 9 | en |
local.contributor.lastname | Hussain | en |
local.contributor.lastname | Kaewmaraya | en |
local.contributor.lastname | Hu | en |
local.contributor.lastname | Zhao | en |
dc.identifier.staff | une-id:thussai3 | en |
local.profile.orcid | 0000-0003-1973-4584 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/55872 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Efficient Control of the Shuttle Effect in Sodium–Sulfur Batteries with Functionalized Nanoporous Graphenes | en |
local.relation.fundingsourcenote | This research was supported by the Research and Graduate Studies of Khon Kaen University. This work was partially supported by the Research Network NANOTEC (RNN) program of the National Nanotechnology Center (NANOTEC), NSTDA, Ministry of Higher Education, Science, Research and Innovation (MHESI), and Khon Kaen University, Thailand. | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.relation.grantdescription | ARC/FL170100101 (ARC) | en |
local.search.author | Hussain, Tanveer | en |
local.search.author | Kaewmaraya, Thanayut | en |
local.search.author | Hu, Zhe | en |
local.search.author | Zhao, Xiu Song | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.published | 2022 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/13f213fa-e455-48be-b59a-9c221e87b4e1 | en |
local.subject.for2020 | 340799 Theoretical and computational chemistry not elsewhere classified | en |
local.subject.for2020 | 340701 Computational chemistry | en |
local.subject.seo2020 | 170301 Battery storage | en |
local.subject.seo2020 | 170899 Renewable energy not elsewhere classified | en |
local.profile.affiliationtype | UNE Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Size | Format |
---|
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.