Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/55872
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHussain, Tanveeren
dc.contributor.authorKaewmaraya, Thanayuten
dc.contributor.authorHu, Zheen
dc.contributor.authorZhao, Xiu Songen
dc.date.accessioned2023-08-27T22:55:23Z-
dc.date.available2023-08-27T22:55:23Z-
dc.date.issued2022-08-26-
dc.identifier.citationACS Applied Nano Materials, 5(9), p. 12637-12645en
dc.identifier.issn2574-0970en
dc.identifier.urihttps://hdl.handle.net/1959.11/55872-
dc.description.abstract<p>Room-temperature sodium–sulfur batteries (RT-Na<sub>S</sub>B<sub>s</sub>) are the evolving candidates for large-scale stationary storage because of their major benefits including double-electron redox process and the natural abundance of sodium and sulfur resources. However, their practical applications have been hampered by the poor cycling stability due to the shuttle effect. This work aims at understanding the role of heteroatom-functionalized nanoporous graphene (NPG) in preventing the shuttle effect. The density functional theory method was used to unravel important properties associated with polysulfide–NPG interactions, including binding energy, electronic density of states, charge transfer mechanism, and dissociative energy barriers of the polysulfides. The findings reveal that oxygen- and nitrogen-functionalized NPG can effectively present the shuttle effect by chemically binding to sodium polysulfides (Na<sub>2</sub>S<sub>n</sub>) with a binding energy stronger than that between Na<sub>2</sub>S<sub>n</sub> and the common electrolyte solvents. The chemical adsorption of Na<sub>2</sub>S<sub>n</sub> on the functionalized NPG causes a semiconductor-to-metal transition, benefiting the electrical conductivity. Moreover, the functionalized NPG lowers the Na<sub>2</sub>S dissociation energy to substantially form NaS and Na, which serves as a catalyst for enhancing the redox reactions between Na and S.</p>en
dc.languageenen
dc.publisherAmerican Chemical Societyen
dc.relation.ispartofACS Applied Nano Materialsen
dc.titleEfficient Control of the Shuttle Effect in Sodium–Sulfur Batteries with Functionalized Nanoporous Graphenesen
dc.typeJournal Articleen
dc.identifier.doi10.1021/acsanm.2c02405en
local.contributor.firstnameTanveeren
local.contributor.firstnameThanayuten
local.contributor.firstnameZheen
local.contributor.firstnameXiu Songen
local.relation.isfundedbyARCen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailthussai3@une.edu.auen
local.output.categoryC1en
local.grant.numberFL170100101 (ARC)en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited States of Americaen
local.format.startpage12637en
local.format.endpage12645en
local.peerreviewedYesen
local.identifier.volume5en
local.identifier.issue9en
local.contributor.lastnameHussainen
local.contributor.lastnameKaewmarayaen
local.contributor.lastnameHuen
local.contributor.lastnameZhaoen
dc.identifier.staffune-id:thussai3en
local.profile.orcid0000-0003-1973-4584en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/55872en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleEfficient Control of the Shuttle Effect in Sodium–Sulfur Batteries with Functionalized Nanoporous Graphenesen
local.relation.fundingsourcenoteThis research was supported by the Research and Graduate Studies of Khon Kaen University. This work was partially supported by the Research Network NANOTEC (RNN) program of the National Nanotechnology Center (NANOTEC), NSTDA, Ministry of Higher Education, Science, Research and Innovation (MHESI), and Khon Kaen University, Thailand.en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.relation.grantdescriptionARC/FL170100101 (ARC)en
local.search.authorHussain, Tanveeren
local.search.authorKaewmaraya, Thanayuten
local.search.authorHu, Zheen
local.search.authorZhao, Xiu Songen
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2022en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/13f213fa-e455-48be-b59a-9c221e87b4e1en
local.subject.for2020340799 Theoretical and computational chemistry not elsewhere classifieden
local.subject.for2020340701 Computational chemistryen
local.subject.seo2020170301 Battery storageen
local.subject.seo2020170899 Renewable energy not elsewhere classifieden
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.