Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/55834
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKotmool, Komsilpen
dc.contributor.authorKaewmaraya, Thanayuten
dc.contributor.authorHussain, Tanveeren
dc.contributor.authorAhuja, Rajeeven
dc.contributor.authorLuo, Weien
dc.contributor.authorBovornratanaraks, Thitien
dc.date.accessioned2023-08-24T05:39:31Z-
dc.date.available2023-08-24T05:39:31Z-
dc.date.issued2022-08-07-
dc.identifier.citationPhysical Chemistry Chemical Physics, 24(29), p. 17862-17869en
dc.identifier.issn1463-9084en
dc.identifier.issn1463-9076en
dc.identifier.urihttps://hdl.handle.net/1959.11/55834-
dc.description.abstract<p>MXenes are a family of novel two-dimensional (2D) materials attracting intensive interest because of the rich chemistry rooted from the highly diversified surface functional groups. This enables the chemical optimization suitable for versatile applications, including energy conversion and storage, sensors, and catalysis. This work reports the ab initio study of the crystal energetics, electronic properties, and mechanical properties, and the impacts of strain on the electronic properties of tetragonal (1T) and hexagonal (2H) phases of Mo<sub>2</sub>C as well as the surface-terminated Mo<sub>2</sub>CT<sub>2</sub> (T = O, F, and Cl). Our findings indicate that 2H-Mo<sub>2</sub>C is energetically more stabilized than the 1T counterpart, and the 1T-to-2H transition requires a substantial energy of 210 meV per atom. The presence of surface termination T atoms on Mo<sub>2</sub>C intrinsically induces variations in the atomic structure. The calculated structures were selected based on the energetic and thermodynamic stabilities (400 K). The O atom prefers to be terminated on 2H-Mo<sub>2</sub>C, whereas the Cl atom energetically stabilizes on 1T-Mo<sub>2</sub>C. Meanwhile, with certain configurations, 2H-Mo<sub>2</sub>CF<sub>2</sub> and 1T-Mo<sub>2</sub>CF<sub>2</sub> with slightly different energies could exist simultaneously. The Mo<sub>2</sub>CO<sub>2</sub> possesses the highest mechanical strength and elastic modulus (<i>σmax</i> = 52 GPa at <i>εb</i> = 20% and <i>E</i> = 507 GPa). The nature of the ordered centrosymmetric layer and the strong bonding between 4 d-Mo and 2 p-O of 2H-Mo<sub>2</sub>CO<sub>2</sub> are responsible for its promising mechanical properties. Interestingly, the topological properties of 2H-Mo<sub>2</sub>CO<sub>2</sub> at a wide range of strains (−10% to 12%) are reported. Moreover, 2H-Mo<sub>2</sub>CF<sub>2</sub> is metallic through the range of calculation. Meanwhile, originally semiconducting 1T-Mo<sub>2</sub>CF<sub>2</sub> and 1T-Mo<sub>2</sub>CCl<sub>2</sub> preserve their features under the ranges of the strain of −2% to 10% and −1% to 5%, respectively, beyond which they undergo the semiconductor-to-metal transitions. These findings would guide the potential applications in modern 2D straintronic devices.</p>en
dc.languageenen
dc.publisherRoyal Society of Chemistryen
dc.relation.ispartofPhysical Chemistry Chemical Physicsen
dc.titleBiaxial stress and functional groups (T = O, F, and Cl) tuning the structural, mechanical, and electronic properties of monolayer molybdenum carbideen
dc.typeJournal Articleen
dc.identifier.doi10.1039/D2CP02557Den
local.contributor.firstnameKomsilpen
local.contributor.firstnameThanayuten
local.contributor.firstnameTanveeren
local.contributor.firstnameRajeeven
local.contributor.firstnameWeien
local.contributor.firstnameThitien
local.profile.schoolSchool of Science and Technologyen
local.profile.emailthussai3@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited Kingdomen
local.format.startpage17862en
local.format.endpage17869en
local.peerreviewedYesen
local.identifier.volume24en
local.identifier.issue29en
local.contributor.lastnameKotmoolen
local.contributor.lastnameKaewmarayaen
local.contributor.lastnameHussainen
local.contributor.lastnameAhujaen
local.contributor.lastnameLuoen
local.contributor.lastnameBovornratanaraksen
dc.identifier.staffune-id:thussai3en
local.profile.orcid0000-0003-1973-4584en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/55834en
local.date.onlineversion2022-07-19-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleBiaxial stress and functional groups (T = O, F, and Cl) tuning the structural, mechanical, and electronic properties of monolayer molybdenum carbideen
local.relation.fundingsourcenoteThis work was supported by the King Mongkut’s Institute of Technology Ladkrabang (KMITL) Research Fund under the Research Seed Grant for new lecturers (grant number: KREF186327). K. K. also acknowledges the NSRF under the Fundamental Fund (grant number: RE-KRIS/FF65/25) for partial financial support.en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorKotmool, Komsilpen
local.search.authorKaewmaraya, Thanayuten
local.search.authorHussain, Tanveeren
local.search.authorAhuja, Rajeeven
local.search.authorLuo, Weien
local.search.authorBovornratanaraks, Thitien
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.available2022en
local.year.published2022en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/eb74e6b1-bfea-4823-baea-d574174ee23cen
local.subject.for2020340799 Theoretical and computational chemistry not elsewhere classifieden
local.subject.for2020340701 Computational chemistryen
local.subject.seo2020170899 Renewable energy not elsewhere classifieden
local.subject.seo2020180101 Air qualityen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.