Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/55480
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAnderson, Nicholas Todden
dc.contributor.authorWalsh, Kerry Brianen
dc.contributor.authorKoirala, Ananden
dc.contributor.authorWang, Zhenglinen
dc.contributor.authorAmaral, Marcelo Henriqueen
dc.contributor.authorDickinson, Geoff Roberten
dc.contributor.authorSinha, Priyakanten
dc.contributor.authorRobson, Andrew Jamesen
dc.date.accessioned2023-07-28T02:41:08Z-
dc.date.available2023-07-28T02:41:08Z-
dc.date.issued2021-08-27-
dc.identifier.citationAgronomy, 11(9), p. 1-20en
dc.identifier.issn2073-4395en
dc.identifier.urihttps://hdl.handle.net/1959.11/55480-
dc.description.abstract<p>The performance of a multi-view machine vision method was documented at an orchard level, relative to packhouse count. High repeatability was achieved in night-time imaging, with an absolute percentage error of 2% or less. Canopy architecture impacted performance, with reasonable estimates achieved on hedge, single leader and conventional systems (3.4, 5.0, and 8.2 average percentage error, respectively) while fruit load of trellised orchards was over-estimated (at 25.2 average percentage error). Yield estimations were made for multiple orchards via: (i) human count of fruit load on ~5% of trees (FARM), (ii) human count of 18 trees randomly selected within three NDVI stratifications (CAL), (iii) multi-view counts (MV-Raw) and (iv) multi-view corrected for occluded fruit using manual counts of CAL trees (MV-CAL). Across the nine orchards for which results for all methods were available, the FARM, CAL, MV-Raw and MV-CAL methods achieved an average percentage error on packhouse counts of 26, 13, 11 and 17%, with SD of 11, 8, 11 and 9%, respectively, in the 2019–2020 season. The absolute percentage error of the MV-Raw estimates was 10% or less in 15 of the 20 orchards assessed. Greater error in load estimation occurred in the 2020–2021 season due to the time-spread of flowering. Use cases for the tree level data on fruit load was explored in context of fruit load density maps to inform early harvesting and to interpret crop damage, and tree frequency distributions based on fruit load per tree.</p>en
dc.languageenen
dc.publisherMDPI AGen
dc.relation.ispartofAgronomyen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleEstimation of Fruit Load in Australian Mango Orchards Using Machine Visionen
dc.typeJournal Articleen
dc.identifier.doi10.3390/agronomy11091711en
dcterms.accessRightsUNE Greenen
local.contributor.firstnameNicholas Todden
local.contributor.firstnameKerry Brianen
local.contributor.firstnameAnanden
local.contributor.firstnameZhenglinen
local.contributor.firstnameMarcelo Henriqueen
local.contributor.firstnameGeoff Roberten
local.contributor.firstnamePriyakanten
local.contributor.firstnameAndrew Jamesen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailpsinha2@une.edu.auen
local.profile.emailarobson7@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeSwitzerlanden
local.identifier.runningnumber1711en
local.format.startpage1en
local.format.endpage20en
local.peerreviewedYesen
local.identifier.volume11en
local.identifier.issue9en
local.access.fulltextYesen
local.contributor.lastnameAndersonen
local.contributor.lastnameWalshen
local.contributor.lastnameKoiralaen
local.contributor.lastnameWangen
local.contributor.lastnameAmaralen
local.contributor.lastnameDickinsonen
local.contributor.lastnameSinhaen
local.contributor.lastnameRobsonen
dc.identifier.staffune-id:psinha2en
dc.identifier.staffune-id:arobson7en
local.profile.orcid0000-0002-0278-6866en
local.profile.orcid0000-0001-5762-8980en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/55480en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleEstimation of Fruit Load in Australian Mango Orchards Using Machine Visionen
local.relation.fundingsourcenoteThis research was funded by the Australian Government Department of Agriculture and Water Resources as part of its Rural R&D for Profit program through Hort Innovation, with support from Central Queensland University, project ST19009. The Walkamin planting systems trial was established via the 'Transforming subtropical and tropical tree productivity' project, a collaboration between Hort Innovation using the across industry R&D levy, and co-investment from DAF, Queensland Alliance for Agriculture and Food Innovation and the Australian government.en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorAnderson, Nicholas Todden
local.search.authorWalsh, Kerry Brianen
local.search.authorKoirala, Ananden
local.search.authorWang, Zhenglinen
local.search.authorAmaral, Marcelo Henriqueen
local.search.authorDickinson, Geoff Roberten
local.search.authorSinha, Priyakanten
local.search.authorRobson, Andrew Jamesen
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/d358baa7-cc7d-4c49-b87b-b9f49c0a8c52en
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2021en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/d358baa7-cc7d-4c49-b87b-b9f49c0a8c52en
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/d358baa7-cc7d-4c49-b87b-b9f49c0a8c52en
local.subject.for2020300206 Agricultural spatial analysis and modellingen
local.subject.for2020300207 Agricultural systems analysis and modellingen
local.subject.seo2020260599 Horticultural crops not elsewhere classifieden
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeUNE Affiliationen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
openpublished/EstimationSinhaRobson2021JournalArticle.pdfPublished version8.58 MBAdobe PDF
Download Adobe
View/Open
Show simple item record

SCOPUSTM   
Citations

25
checked on Feb 15, 2025

Page view(s)

562
checked on Jan 19, 2025

Download(s)

82
checked on Jan 19, 2025
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons