Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/55016
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPanigrahi, Puspamitraen
dc.contributor.authorPal, Yashen
dc.contributor.authorPanigrahi, Akshayaen
dc.contributor.authorBae, Hyeonhuen
dc.contributor.authorLee, Hoonkyungen
dc.contributor.authorAhuja, Rajeeven
dc.contributor.authorHussain, Tanveeren
dc.date.accessioned2023-06-20T22:28:58Z-
dc.date.available2023-06-20T22:28:58Z-
dc.date.issued2022-10-11-
dc.identifier.citationAdvanced Theory and Simulations, 5(10), p. 1-10en
dc.identifier.issn2513-0390en
dc.identifier.urihttps://hdl.handle.net/1959.11/55016-
dc.description.abstract<p>Effective techniques for the detection of selected viruses detection of their amino acids (AAs) constituents are highly desired, especially in the present COVID pandemic. Motivated by this, we have used density functional theory (DFT) simulations to explore the potential applications of green phosphorene monolayer (GPM) as efficient nanobio-sensor. We have employed van der Waals induced calculations to study the ground-state geometries, binding strength, electronic structures, and charge transfer mechanism of pristine, vacancy-induced and metal-doped GPM to detect the selected AAs, such as glycine, proline and aspartic, in both aqueous and non-aqueous media. We find that the interactions of studied AAs are comparatively weak on pristine (−0.49 to −0.76 eV) and vacancy-induced GPM as compared to the metal-doped GPM (−0.62 to −1.22 eV). Among the considered dopants, Ag-doping enhances the binding of AAs to the GPM stronger than the others. In addition to appropriate binding energies, significant charge transfers coupled with measurable changes in the electronic properties further authenticate the potential of GPM. Boltzmann thermodynamic analysis have been used to study the sensing mechanism under varied conditions of temperatures and pressure for the practical applications. Our findings signify the potential of GPM based sensors towards efficient detection of the selected AAs.</p>en
dc.languageenen
dc.publisherWiley-VCH Verlag GmbH & Co KGaAen
dc.relation.ispartofAdvanced Theory and Simulationsen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleEfficient Sensing of Selected Amino Acids as Biomarker by Green Phosphorene Monolayers: Smart Diagnosis of Virusesen
dc.typeJournal Articleen
dc.identifier.doi10.1002/adts.202200357en
dcterms.accessRightsUNE Greenen
local.contributor.firstnamePuspamitraen
local.contributor.firstnameYashen
local.contributor.firstnameAkshayaen
local.contributor.firstnameHyeonhuen
local.contributor.firstnameHoonkyungen
local.contributor.firstnameRajeeven
local.contributor.firstnameTanveeren
local.profile.schoolSchool of Science and Technologyen
local.profile.emailthussai3@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeGermanyen
local.identifier.runningnumber2200357en
local.format.startpage1en
local.format.endpage10en
local.peerreviewedYesen
local.identifier.volume5en
local.identifier.issue10en
local.title.subtitleSmart Diagnosis of Virusesen
local.access.fulltextYesen
local.contributor.lastnamePanigrahien
local.contributor.lastnamePalen
local.contributor.lastnamePanigrahien
local.contributor.lastnameBaeen
local.contributor.lastnameLeeen
local.contributor.lastnameAhujaen
local.contributor.lastnameHussainen
dc.identifier.staffune-id:thussai3en
local.profile.orcid0000-0003-1973-4584en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/55016en
local.date.onlineversion2022-09-04-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleEfficient Sensing of Selected Amino Acids as Biomarker by Green Phosphorene Monolayersen
local.relation.fundingsourcenoteP.P. is indebted to the CENCON for financial support. R.A. thanks the Swedish Research Council (VR-2016-06014 and VR-2020-04410) for financial support. SNIC and SNAC are acknowledged for providing the computing facilities. H.L. acknowledges the support by the Basic Science Research Program (NRF-2018R1D1A1B07046751) through the National Research Foundation (NRF) of Korea, funded by the Ministry of Science, ICT & Fu-ture Planning and by the National Research Foundation (NRF) of Korea grant funded by the Korea government(MSIT; NRF-2021R1A5A1032996). Open access publishing facilitated by University of New England, as part of the Wiley - University of New England agreement via the Council of Australian University Librarians.en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorPanigrahi, Puspamitraen
local.search.authorPal, Yashen
local.search.authorPanigrahi, Akshayaen
local.search.authorBae, Hyeonhuen
local.search.authorLee, Hoonkyungen
local.search.authorAhuja, Rajeeven
local.search.authorHussain, Tanveeren
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/4caa0074-dc38-41cf-b95f-d55a11a4d2b6en
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.available2022en
local.year.published2022en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/4caa0074-dc38-41cf-b95f-d55a11a4d2b6en
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/4caa0074-dc38-41cf-b95f-d55a11a4d2b6en
local.subject.for2020340799 Theoretical and computational chemistry not elsewhere classifieden
local.subject.seo2020180199 Air quality, atmosphere and weather not elsewhere classifieden
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.relation.worldcathttps://www.worldcat.org/title/9641179763en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
openpublished/EfficientHussain2022JournalArticle.pdfPublished version3.12 MBAdobe PDF
Download Adobe
View/Open
Show simple item record
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons