Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/54892
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Abed-alguni, Bilal H | en |
dc.contributor.author | Alawad, Noor Aldeen | en |
dc.contributor.author | Al-Betar, Mohammed Azmi | en |
dc.contributor.author | Paul, David | en |
dc.date.accessioned | 2023-06-07T03:01:14Z | - |
dc.date.available | 2023-06-07T03:01:14Z | - |
dc.date.issued | 2023-06 | - |
dc.identifier.citation | Applied Intelligence, 53(11), p. 13224-13260 | en |
dc.identifier.issn | 1573-7497 | en |
dc.identifier.issn | 0924-669X | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/54892 | - |
dc.description.abstract | <p>This paper proposes new improved binary versions of the Sine Cosine Algorithm (SCA) for the Feature Selection (FS) problem. FS is an essential machine learning and data mining task of choosing a subset of highly discriminating features from noisy, irrelevant, high-dimensional, and redundant features to best represent a dataset. SCA is a recent metaheuristic algorithm established to emulate a model based on sine and cosine trigonometric functions. It was initially proposed to tackle problems in the continuous domain. The SCA has been modified to Binary SCA (BSCA) to deal with the binary domain of the FS problem. To improve the performance of BSCA, three accumulative improved variations are proposed (i.e., IBSCA1, IBSCA2, and IBSCA3) where the last version has the best performance. IBSCA1 employs Opposition Based Learning (OBL) to help ensure a diverse population of candidate solutions. IBSCA2 improves IBSCA1 by adding Variable Neighborhood Search (VNS) and Laplace distribution to support several mutation methods. IBSCA3 improves IBSCA2 by optimizing the best candidate solution using Refraction Learning (RL), a novel OBL approach based on light refraction. For performance evaluation, 19 real-wold datasets, including a COVID-19 dataset, were selected with different numbers of features, classes, and instances. Three performance measurements have been used to test the IBSCA versions: classification accuracy, number of features, and fitness values. Furthermore, the performance of the last variation of IBSCA3 is compared against 28 existing popular algorithms. Interestingly, IBCSA3 outperformed almost all comparative methods in terms of classification accuracy and fitness values. At the same time, it was ranked 15 out of 19 in terms of number of features. The overall simulation and statistical results indicate that IBSCA3 performs better than the other algorithms.</p> | en |
dc.language | en | en |
dc.publisher | Springer New York LLC | en |
dc.relation.ispartof | Applied Intelligence | en |
dc.title | Opposition-based sine cosine optimizer utilizing refraction learning and variable neighborhood search for feature selection | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1007/s10489-022-04201-z | en |
dc.identifier.pmid | 36247211 | en |
dcterms.accessRights | UNE Green | en |
local.contributor.firstname | Bilal H | en |
local.contributor.firstname | Noor Aldeen | en |
local.contributor.firstname | Mohammed Azmi | en |
local.contributor.firstname | David | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | dpaul4@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | United States of America | en |
local.format.startpage | 13224 | en |
local.format.endpage | 13260 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 53 | en |
local.identifier.issue | 11 | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | Abed-alguni | en |
local.contributor.lastname | Alawad | en |
local.contributor.lastname | Al-Betar | en |
local.contributor.lastname | Paul | en |
dc.identifier.staff | une-id:dpaul4 | en |
local.profile.orcid | 0000-0002-2428-5667 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/54892 | en |
local.date.onlineversion | 2022-10-08 | - |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Opposition-based sine cosine optimizer utilizing refraction learning and variable neighborhood search for feature selection | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Abed-alguni, Bilal H | en |
local.search.author | Alawad, Noor Aldeen | en |
local.search.author | Al-Betar, Mohammed Azmi | en |
local.search.author | Paul, David | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.available | 2022 | en |
local.year.published | 2023 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/01e943d0-e4d2-4770-95a9-181b9b8b1231 | en |
local.subject.for2020 | 460209 Planning and decision making | en |
local.subject.seo2020 | 280115 Expanding knowledge in the information and computing sciences | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | UNE Affiliation | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Size | Format |
---|
SCOPUSTM
Citations
22
checked on Dec 14, 2024
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.