Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/54892
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAbed-alguni, Bilal Hen
dc.contributor.authorAlawad, Noor Aldeenen
dc.contributor.authorAl-Betar, Mohammed Azmien
dc.contributor.authorPaul, Daviden
dc.date.accessioned2023-06-07T03:01:14Z-
dc.date.available2023-06-07T03:01:14Z-
dc.date.issued2023-06-
dc.identifier.citationApplied Intelligence, 53(11), p. 13224-13260en
dc.identifier.issn1573-7497en
dc.identifier.issn0924-669Xen
dc.identifier.urihttps://hdl.handle.net/1959.11/54892-
dc.description.abstract<p>This paper proposes new improved binary versions of the Sine Cosine Algorithm (SCA) for the Feature Selection (FS) problem. FS is an essential machine learning and data mining task of choosing a subset of highly discriminating features from noisy, irrelevant, high-dimensional, and redundant features to best represent a dataset. SCA is a recent metaheuristic algorithm established to emulate a model based on sine and cosine trigonometric functions. It was initially proposed to tackle problems in the continuous domain. The SCA has been modified to Binary SCA (BSCA) to deal with the binary domain of the FS problem. To improve the performance of BSCA, three accumulative improved variations are proposed (i.e., IBSCA1, IBSCA2, and IBSCA3) where the last version has the best performance. IBSCA1 employs Opposition Based Learning (OBL) to help ensure a diverse population of candidate solutions. IBSCA2 improves IBSCA1 by adding Variable Neighborhood Search (VNS) and Laplace distribution to support several mutation methods. IBSCA3 improves IBSCA2 by optimizing the best candidate solution using Refraction Learning (RL), a novel OBL approach based on light refraction. For performance evaluation, 19 real-wold datasets, including a COVID-19 dataset, were selected with different numbers of features, classes, and instances. Three performance measurements have been used to test the IBSCA versions: classification accuracy, number of features, and fitness values. Furthermore, the performance of the last variation of IBSCA3 is compared against 28 existing popular algorithms. Interestingly, IBCSA3 outperformed almost all comparative methods in terms of classification accuracy and fitness values. At the same time, it was ranked 15 out of 19 in terms of number of features. The overall simulation and statistical results indicate that IBSCA3 performs better than the other algorithms.</p>en
dc.languageenen
dc.publisherSpringer New York LLCen
dc.relation.ispartofApplied Intelligenceen
dc.titleOpposition-based sine cosine optimizer utilizing refraction learning and variable neighborhood search for feature selectionen
dc.typeJournal Articleen
dc.identifier.doi10.1007/s10489-022-04201-zen
dc.identifier.pmid36247211en
dcterms.accessRightsUNE Greenen
local.contributor.firstnameBilal Hen
local.contributor.firstnameNoor Aldeenen
local.contributor.firstnameMohammed Azmien
local.contributor.firstnameDaviden
local.profile.schoolSchool of Science and Technologyen
local.profile.emaildpaul4@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited States of Americaen
local.format.startpage13224en
local.format.endpage13260en
local.peerreviewedYesen
local.identifier.volume53en
local.identifier.issue11en
local.access.fulltextYesen
local.contributor.lastnameAbed-algunien
local.contributor.lastnameAlawaden
local.contributor.lastnameAl-Betaren
local.contributor.lastnamePaulen
dc.identifier.staffune-id:dpaul4en
local.profile.orcid0000-0002-2428-5667en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/54892en
local.date.onlineversion2022-10-08-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleOpposition-based sine cosine optimizer utilizing refraction learning and variable neighborhood search for feature selectionen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorAbed-alguni, Bilal Hen
local.search.authorAlawad, Noor Aldeenen
local.search.authorAl-Betar, Mohammed Azmien
local.search.authorPaul, Daviden
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.available2022en
local.year.published2023en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/01e943d0-e4d2-4770-95a9-181b9b8b1231en
local.subject.for2020460209 Planning and decision makingen
local.subject.seo2020280115 Expanding knowledge in the information and computing sciencesen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeUNE Affiliationen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

22
checked on Dec 14, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.