Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/54683
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Brinkhoff, James | en |
dc.date.accessioned | 2023-05-07T22:34:24Z | - |
dc.date.available | 2023-05-07T22:34:24Z | - |
dc.date.issued | 2022-09-28 | - |
dc.identifier.citation | IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, p. 5854-5857 | en |
dc.identifier.isbn | 9781665427920 | en |
dc.identifier.isbn | 9781665427913 | en |
dc.identifier.isbn | 9781665427937 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/54683 | - |
dc.description.abstract | <p>Regional maps of rice fields provided early in each growing season facilitate production estimates, planning around harvest logistics, marketing and targeted agronomic recommendations. This work develops maps of all irrigated rice fields in New South Wales, Australia. Classification models were trained on reference maps from the 2019 and 2020 harvest seasons. Model predictions were tested against a reference rice map from the 2021 harvest season, covering 60,000 km <sup>2</sup> . The random forest algorithm was used, with features from aggregated time-series of Sentinel-2 imagery. A sequence of maps were generated at intervals of 15 days, from early to late in the growing season, with accuracy assessed at each time. The maps achieved 95% overall accuracy against point samples at 16 January 2021 ( ≈80 days after sowing). Pixel-based F1-scores against the reference map were above 80% for the 1, 16 and 31 January classified maps.</p> | en |
dc.language | en | en |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en |
dc.relation.ispartof | IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium | en |
dc.relation.ispartofseries | IEEE International Geoscience and Remote Sensing Symposium proceedings | en |
dc.title | Early-Season Industry-Wide Rice Maps Using Sentinel-2 Time Series | en |
dc.type | Conference Publication | en |
dc.relation.conference | IGARSS 2022: 2022 IEEE International Geoscience and Remote Sensing Symposium | en |
dc.identifier.doi | 10.1109/IGARSS46834.2022.9883755 | en |
local.contributor.firstname | James | en |
dc.contributor.corporate | Agrifutures Australia | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | jbrinkho@une.edu.au | en |
local.output.category | E1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.date.conference | 17th - 22nd July, 2022 | en |
local.conference.place | Kuala Lumpur, Malaysia | en |
local.publisher.place | Piscataway, United States of America | en |
local.format.startpage | 5854 | en |
local.format.endpage | 5857 | en |
local.series.issn | 2153-7003 | en |
local.series.issn | 2153-6996 | en |
local.peerreviewed | Yes | en |
local.contributor.lastname | Brinkhoff | en |
dc.identifier.staff | une-id:jbrinkho | en |
local.profile.orcid | 0000-0002-0721-2458 | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/54683 | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Early-Season Industry-Wide Rice Maps Using Sentinel-2 Time Series | en |
local.relation.fundingsourcenote | AgriFutures project PRO-013078, "Realtime remote sensing based monitoring for the rice industry". | en |
local.output.categorydescription | E1 Refereed Scholarly Conference Publication | en |
local.conference.details | IGARSS 2022: 2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17th - 22nd July, 2022 | en |
local.search.author | Brinkhoff, James | en |
local.uneassociation | Yes | en |
dc.date.presented | 2022-07 | - |
local.atsiresearch | No | en |
local.conference.venue | Kuala Lumpur Convention Centre (KLCC) | en |
local.sensitive.cultural | No | en |
local.year.published | 2022 | en |
local.year.presented | 2022 | en |
local.subject.for2020 | 300206 Agricultural spatial analysis and modelling | en |
local.subject.for2020 | 401304 Photogrammetry and remote sensing | en |
local.subject.seo2020 | 260308 Rice | en |
local.date.start | 2022-07-17 | - |
local.date.end | 2022-07-22 | - |
local.profile.affiliationtype | UNE Affiliation | en |
Appears in Collections: | Conference Publication School of Science and Technology |
Files in This Item:
File | Description | Size | Format |
---|
SCOPUSTM
Citations
3
checked on Dec 7, 2024
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.