Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/54668
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kyonka, Elizabeth G E | en |
dc.date.accessioned | 2023-05-02T02:02:58Z | - |
dc.date.available | 2023-05-02T02:02:58Z | - |
dc.date.issued | 2019-03-15 | - |
dc.identifier.citation | Perspectives on Behavior Science, 42(1), p. 133-152 | en |
dc.identifier.issn | 2520-8977 | en |
dc.identifier.issn | 2520-8969 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/54668 | - |
dc.description.abstract | <p>Power analysis is an overlooked and underreported aspect of study design. A priori power analysis involves estimating the sample size required for a study based on predetermined maximum tolerable Type I and II error rates and the minimum effect size that would be clinically, practically, or theoretically meaningful. Power is more often discussed within the context of large-N group designs, but power analyses can be used in small-N research and within-subjects designs to maximize the probative value of the research. In this tutorial, case studies illustrate how power analysis can be used by behavior analysts to compare two independent groups, behavior in baseline and intervention conditions, and response characteristics across multiple within-subject treatments. After reading this tutorial, the reader will be able to estimate just noticeable differences using means and standard deviations, convert them to standardized effect sizes, and use G*Power to determine the sample size needed to detect an effect with desired power.</p> | en |
dc.language | en | en |
dc.publisher | Springer Cham | en |
dc.relation.ispartof | Perspectives on Behavior Science | en |
dc.title | Tutorial: Small-N Power Analysis | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1007/s40614-018-0167-4 | en |
dc.identifier.pmid | 31976425 | en |
dcterms.accessRights | Bronze | en |
local.contributor.firstname | Elizabeth G E | en |
local.profile.school | School of Psychology | en |
local.profile.email | ekyonka@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | Switzerland | en |
local.format.startpage | 133 | en |
local.format.endpage | 152 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 42 | en |
local.identifier.issue | 1 | en |
local.title.subtitle | Small-N Power Analysis | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | Kyonka | en |
dc.identifier.staff | une-id:ekyonka | en |
local.profile.orcid | 0000-0001-7974-6080 | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/54668 | en |
local.date.onlineversion | 2018-05-22 | - |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Tutorial | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Kyonka, Elizabeth G E | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.identifier.wosid | 000464867500008 | en |
local.year.available | 2018 | en |
local.year.published | 2019 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/a8c23e67-51cc-44fe-b7a0-03e239ac2946 | en |
local.subject.for2020 | 460105 Applications in social sciences and education | en |
local.subject.for2020 | 490509 Statistical theory | en |
local.subject.for2020 | 490501 Applied statistics | en |
local.subject.seo2020 | 220401 Application software packages | en |
local.subject.seo2020 | 280118 Expanding knowledge in the mathematical sciences | en |
local.subject.seo2020 | 280121 Expanding knowledge in psychology | en |
local.profile.affiliationtype | UNE Affiliation | en |
Appears in Collections: | Journal Article School of Psychology |
Files in This Item:
File | Size | Format |
---|
SCOPUSTM
Citations
22
checked on Jan 25, 2025
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.