Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/53200
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCoast, Onoriodeen
dc.contributor.authorPosch, Bradley Cen
dc.contributor.authorRognoni, Bethany Gen
dc.contributor.authorBramley, Helenen
dc.contributor.authorGaju, Oorbessyen
dc.contributor.authorMackenzie, Johnen
dc.contributor.authorPickles, Claireen
dc.contributor.authorKelly, Alison Men
dc.contributor.authorLu, Meiqinen
dc.contributor.authorRuan, Yong-Lingen
dc.contributor.authorTrethowan, Richarden
dc.contributor.authorAtkin, Owen Ken
dc.date.accessioned2022-08-18T22:53:40Z-
dc.date.available2022-08-18T22:53:40Z-
dc.date.issued2022-09-
dc.identifier.citationThe Plant Journal, 111(5), p. 1368-1382en
dc.identifier.issn1365-313Xen
dc.identifier.urihttps://hdl.handle.net/1959.11/53200-
dc.description.abstract<p>High temperature stress inhibits photosynthesis and threatens wheat production. One measure of photosynthetic heat tolerance is <i>T</i><sub>crit</sub> – the critical temperature at which incipient damage to photosystem II (PSII) occurs. This trait could be improved in wheat by exploiting genetic variation and genotype-by-environment interactions (GEI). Flag leaf <i>T</i><sub>crit</sub> of 54 wheat genotypes was evaluated in 12 thermal environments over 3 years in Australia, and analysed using linear mixed models to assess GEI effects. Nine of the 12 environments had significant genetic effects and highly variable broad-sense heritability (<i>H</i><sup>2</sup> ranged from 0.15 to 0.75). <i>T</i><sub>crit</sub> GEI was variable, with 55.6% of the genetic variance across environments accounted for by the factor analytic model. Mean daily growth temperature in the month preceding anthesis was the most influential environmental driver of <i>T</i><sub>crit</sub> GEI, suggesting biochemical, physiological and structural adjustments to temperature requiring different durations to manifest. These changes help protect or repair PSII upon exposure to heat stress, and may improve carbon assimilation under high temperature. To support breeding efforts to improve wheat performance under high temperature, we identified genotypes superior to commercial cultivars commonly grown by farmers, and demonstrated potential for developing genotypes with greater photosynthetic heat tolerance.</p>en
dc.languageenen
dc.publisherSociety for Experimental Biologyen
dc.relation.ispartofThe Plant Journalen
dc.titleWheat photosystem II heat tolerance: evidence for genotype-by-environment interactionsen
dc.typeJournal Articleen
dc.identifier.doi10.1111/tpj.15894en
dc.identifier.pmid35781899en
local.contributor.firstnameOnoriodeen
local.contributor.firstnameBradley Cen
local.contributor.firstnameBethany Gen
local.contributor.firstnameHelenen
local.contributor.firstnameOorbessyen
local.contributor.firstnameJohnen
local.contributor.firstnameClaireen
local.contributor.firstnameAlison Men
local.contributor.firstnameMeiqinen
local.contributor.firstnameYong-Lingen
local.contributor.firstnameRicharden
local.contributor.firstnameOwen Ken
local.relation.isfundedbyARCen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.emailocoast@une.edu.auen
local.output.categoryC1en
local.grant.numberCE140100008en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited Kingdomen
local.format.startpage1368en
local.format.endpage1382en
local.identifier.scopusid85134745014en
local.peerreviewedYesen
local.identifier.volume111en
local.identifier.issue5en
local.title.subtitleevidence for genotype-by-environment interactionsen
local.contributor.lastnameCoasten
local.contributor.lastnamePoschen
local.contributor.lastnameRognonien
local.contributor.lastnameBramleyen
local.contributor.lastnameGajuen
local.contributor.lastnameMackenzieen
local.contributor.lastnamePicklesen
local.contributor.lastnameKellyen
local.contributor.lastnameLuen
local.contributor.lastnameRuanen
local.contributor.lastnameTrethowanen
local.contributor.lastnameAtkinen
dc.identifier.staffune-id:ocoasten
local.profile.orcid0000-0002-5013-4715en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/53200en
local.date.onlineversion2022-07-04-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleWheat photosystem II heat toleranceen
local.relation.fundingsourcenoteThis work was supported by grants from the ARC Centre of Excellence in Plant Energy Biology (CE140100008), and the Australian Grains Research and Development Corporation (GRDC) Postdoctoral Fellowship: Photosynthetic Acclimation to High Temperature in Wheat (US1904-003RTX – 9177346), National Wheat Heat Tolerance Project (US00080), and Statistics for the Australian Grains Industry (SAGI) – Northern Node Project (DAQ1606-003RTX). Onoriode Coast received support from Research England's 'Expanding Excellence in England' (E3)-funded Food and Nutrition Security Initiative of the Natural Resources Institute, University of Greenwich. Bradley C. Posch was supported by the Australian Government Research Training Program. The authors are grateful to the Australian Plant Phenomics Facility (APPF) for use of their growth capsules. The APPF is supported under the National Collaborative Research Infrastructure Strategy of the Australian Government.en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.relation.grantdescriptionARC/CE140100008en
local.search.authorCoast, Onoriodeen
local.search.authorPosch, Bradley Cen
local.search.authorRognoni, Bethany Gen
local.search.authorBramley, Helenen
local.search.authorGaju, Oorbessyen
local.search.authorMackenzie, Johnen
local.search.authorPickles, Claireen
local.search.authorKelly, Alison Men
local.search.authorLu, Meiqinen
local.search.authorRuan, Yong-Lingen
local.search.authorTrethowan, Richarden
local.search.authorAtkin, Owen Ken
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.identifier.wosid000830048500001en
local.year.available2022en
local.year.published2022en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/4b41a225-a946-49fd-8557-d337249e5b04en
local.subject.for2020300404 Crop and pasture biochemistry and physiologyen
local.subject.for2020310806 Plant physiologyen
local.subject.seo2020260312 Wheaten
local.subject.seo2020190101 Climate change adaptation measures (excl. ecosystem)en
Appears in Collections:Journal Article
School of Environmental and Rural Science
Files in This Item:
2 files
File Description SizeFormat 
Show simple item record

SCOPUSTM   
Citations

15
checked on Jan 25, 2025

Page view(s)

480
checked on Mar 8, 2023

Download(s)

8
checked on Mar 8, 2023
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.