Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/52325
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Aydemir, Emrah | en |
dc.contributor.author | Yalcinkaya, Mehmet Ali | en |
dc.contributor.author | Barua, Prabal Datta | en |
dc.contributor.author | Baygin, Mehmet | en |
dc.contributor.author | Faust, Oliver | en |
dc.contributor.author | Dogan, Sengul | en |
dc.contributor.author | Chakraborty, Subrata | en |
dc.contributor.author | Tuncer, Turker | en |
dc.contributor.author | Acharya, U Rajendra | en |
dc.date.accessioned | 2022-05-26T00:24:16Z | - |
dc.date.available | 2022-05-26T00:24:16Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | International Journal of Environmental Research and Public Health, 19(4), p. 1-16 | en |
dc.identifier.issn | 1660-4601 | en |
dc.identifier.issn | 1661-7827 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/52325 | - |
dc.description.abstract | <p>Mask usage is one of the most important precautions to limit the spread of COVID-19. Therefore, hygiene rules enforce the correct use of face coverings. Automated mask usage classification might be used to improve compliance monitoring. This study deals with the problem of inappropriate mask use. To address that problem, 2075 face mask usage images were collected. The individual images were labeled as either mask, no masked, or improper mask. Based on these labels, the following three cases were created: Case 1: mask versus no mask versus improper mask, Case 2: mask versus no mask + improper mask, and Case 3: mask versus no mask. This data was used to train and test a hybrid deep feature-based masked face classification model. The presented method comprises of three primary stages: (i) pre-trained ResNet101 and DenseNet201 were used as feature generators; each of these generators extracted 1000 features from an image; (ii) the most discriminative features were selected using an improved RelieF selector; and (iii) the chosen features were used to train and test a support vector machine classifier. That resulting model attained 95.95%, 97.49%, and 100.0% classification accuracy rates on Case 1, Case 2, and Case 3, respectively. Having achieved these high accuracy values indicates that the proposed model is fit for a practical trial to detect appropriate face mask use in real time.</p> | en |
dc.language | en | en |
dc.publisher | MDPI AG | en |
dc.relation.ispartof | International Journal of Environmental Research and Public Health | en |
dc.rights | Attribution 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.title | Hybrid Deep Feature Generation for Appropriate Face Mask Use Detection | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.3390/ijerph19041939 | en |
dc.identifier.pmid | 35206124 | en |
dcterms.accessRights | UNE Green | en |
local.contributor.firstname | Emrah | en |
local.contributor.firstname | Mehmet Ali | en |
local.contributor.firstname | Prabal Datta | en |
local.contributor.firstname | Mehmet | en |
local.contributor.firstname | Oliver | en |
local.contributor.firstname | Sengul | en |
local.contributor.firstname | Subrata | en |
local.contributor.firstname | Turker | en |
local.contributor.firstname | U Rajendra | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | schakra3@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | Switzerland | en |
local.identifier.runningnumber | 1939 | en |
local.format.startpage | 1 | en |
local.format.endpage | 16 | en |
local.identifier.scopusid | 85125274492 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 19 | en |
local.identifier.issue | 4 | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | Aydemir | en |
local.contributor.lastname | Yalcinkaya | en |
local.contributor.lastname | Barua | en |
local.contributor.lastname | Baygin | en |
local.contributor.lastname | Faust | en |
local.contributor.lastname | Dogan | en |
local.contributor.lastname | Chakraborty | en |
local.contributor.lastname | Tuncer | en |
local.contributor.lastname | Acharya | en |
dc.identifier.staff | une-id:schakra3 | en |
local.profile.orcid | 0000-0002-0102-5424 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/52325 | en |
local.date.onlineversion | 2022-02-09 | - |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Hybrid Deep Feature Generation for Appropriate Face Mask Use Detection | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Aydemir, Emrah | en |
local.search.author | Yalcinkaya, Mehmet Ali | en |
local.search.author | Barua, Prabal Datta | en |
local.search.author | Baygin, Mehmet | en |
local.search.author | Faust, Oliver | en |
local.search.author | Dogan, Sengul | en |
local.search.author | Chakraborty, Subrata | en |
local.search.author | Tuncer, Turker | en |
local.search.author | Acharya, U Rajendra | en |
local.open.fileurl | https://rune.une.edu.au/web/retrieve/0da92a9c-cda4-4398-b30e-7bf777913c2f | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.identifier.wosid | 000769164700001 | en |
local.year.available | 2022 | en |
local.year.published | 2022 | en |
local.fileurl.open | https://rune.une.edu.au/web/retrieve/0da92a9c-cda4-4398-b30e-7bf777913c2f | en |
local.fileurl.openpublished | https://rune.une.edu.au/web/retrieve/0da92a9c-cda4-4398-b30e-7bf777913c2f | en |
local.subject.for2020 | 460102 Applications in health | en |
local.subject.for2020 | 461103 Deep learning | en |
local.subject.for2020 | 460308 Pattern recognition | en |
local.subject.seo2020 | 209999 Other health not elsewhere classified | en |
local.subject.seo2020 | 280115 Expanding knowledge in the information and computing sciences | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
openpublished/HybridChakraborty2022JournalArticle.pdf | Published version | 2.13 MB | Adobe PDF Download Adobe | View/Open |
SCOPUSTM
Citations
17
checked on Dec 14, 2024
Page view(s)
986
checked on Oct 22, 2023
Download(s)
4
checked on Oct 22, 2023
This item is licensed under a Creative Commons License