Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/52325
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAydemir, Emrahen
dc.contributor.authorYalcinkaya, Mehmet Alien
dc.contributor.authorBarua, Prabal Dattaen
dc.contributor.authorBaygin, Mehmeten
dc.contributor.authorFaust, Oliveren
dc.contributor.authorDogan, Sengulen
dc.contributor.authorChakraborty, Subrataen
dc.contributor.authorTuncer, Turkeren
dc.contributor.authorAcharya, U Rajendraen
dc.date.accessioned2022-05-26T00:24:16Z-
dc.date.available2022-05-26T00:24:16Z-
dc.date.issued2022-
dc.identifier.citationInternational Journal of Environmental Research and Public Health, 19(4), p. 1-16en
dc.identifier.issn1660-4601en
dc.identifier.issn1661-7827en
dc.identifier.urihttps://hdl.handle.net/1959.11/52325-
dc.description.abstract<p>Mask usage is one of the most important precautions to limit the spread of COVID-19. Therefore, hygiene rules enforce the correct use of face coverings. Automated mask usage classification might be used to improve compliance monitoring. This study deals with the problem of inappropriate mask use. To address that problem, 2075 face mask usage images were collected. The individual images were labeled as either mask, no masked, or improper mask. Based on these labels, the following three cases were created: Case 1: mask versus no mask versus improper mask, Case 2: mask versus no mask + improper mask, and Case 3: mask versus no mask. This data was used to train and test a hybrid deep feature-based masked face classification model. The presented method comprises of three primary stages: (i) pre-trained ResNet101 and DenseNet201 were used as feature generators; each of these generators extracted 1000 features from an image; (ii) the most discriminative features were selected using an improved RelieF selector; and (iii) the chosen features were used to train and test a support vector machine classifier. That resulting model attained 95.95%, 97.49%, and 100.0% classification accuracy rates on Case 1, Case 2, and Case 3, respectively. Having achieved these high accuracy values indicates that the proposed model is fit for a practical trial to detect appropriate face mask use in real time.</p>en
dc.languageenen
dc.publisherMDPI AGen
dc.relation.ispartofInternational Journal of Environmental Research and Public Healthen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleHybrid Deep Feature Generation for Appropriate Face Mask Use Detectionen
dc.typeJournal Articleen
dc.identifier.doi10.3390/ijerph19041939en
dc.identifier.pmid35206124en
dcterms.accessRightsUNE Greenen
local.contributor.firstnameEmrahen
local.contributor.firstnameMehmet Alien
local.contributor.firstnamePrabal Dattaen
local.contributor.firstnameMehmeten
local.contributor.firstnameOliveren
local.contributor.firstnameSengulen
local.contributor.firstnameSubrataen
local.contributor.firstnameTurkeren
local.contributor.firstnameU Rajendraen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailschakra3@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeSwitzerlanden
local.identifier.runningnumber1939en
local.format.startpage1en
local.format.endpage16en
local.identifier.scopusid85125274492en
local.peerreviewedYesen
local.identifier.volume19en
local.identifier.issue4en
local.access.fulltextYesen
local.contributor.lastnameAydemiren
local.contributor.lastnameYalcinkayaen
local.contributor.lastnameBaruaen
local.contributor.lastnameBayginen
local.contributor.lastnameFausten
local.contributor.lastnameDoganen
local.contributor.lastnameChakrabortyen
local.contributor.lastnameTunceren
local.contributor.lastnameAcharyaen
dc.identifier.staffune-id:schakra3en
local.profile.orcid0000-0002-0102-5424en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/52325en
local.date.onlineversion2022-02-09-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleHybrid Deep Feature Generation for Appropriate Face Mask Use Detectionen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorAydemir, Emrahen
local.search.authorYalcinkaya, Mehmet Alien
local.search.authorBarua, Prabal Dattaen
local.search.authorBaygin, Mehmeten
local.search.authorFaust, Oliveren
local.search.authorDogan, Sengulen
local.search.authorChakraborty, Subrataen
local.search.authorTuncer, Turkeren
local.search.authorAcharya, U Rajendraen
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/0da92a9c-cda4-4398-b30e-7bf777913c2fen
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.identifier.wosid000769164700001en
local.year.available2022en
local.year.published2022en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/0da92a9c-cda4-4398-b30e-7bf777913c2fen
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/0da92a9c-cda4-4398-b30e-7bf777913c2fen
local.subject.for2020460102 Applications in healthen
local.subject.for2020461103 Deep learningen
local.subject.for2020460308 Pattern recognitionen
local.subject.seo2020209999 Other health not elsewhere classifieden
local.subject.seo2020280115 Expanding knowledge in the information and computing sciencesen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
openpublished/HybridChakraborty2022JournalArticle.pdfPublished version2.13 MBAdobe PDF
Download Adobe
View/Open
Show simple item record

SCOPUSTM   
Citations

17
checked on Dec 14, 2024

Page view(s)

986
checked on Oct 22, 2023

Download(s)

4
checked on Oct 22, 2023
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons