Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/51906
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Quinn, Thomas P | en |
dc.contributor.author | Crowley, Tamsyn M | en |
dc.contributor.author | Richardson, Mark F | en |
dc.date.accessioned | 2022-05-03T04:23:59Z | - |
dc.date.available | 2022-05-03T04:23:59Z | - |
dc.date.issued | 2018-07-18 | - |
dc.identifier.citation | BMC Bioinformatics, v.19, p. 1-15 | en |
dc.identifier.issn | 1471-2105 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/51906 | - |
dc.description.abstract | <p><b>Background:</b> Count data generated by next-generation sequencing assays do not measure absolute transcript abundances. Instead, the data are constrained to an arbitrary "library size" by the sequencing depth of the assay, and typically must be normalized prior to statistical analysis. The constrained nature of these data means one could alternatively use a log-ratio transformation in lieu of normalization, as often done when testing for differential abundance (DA) of operational taxonomic units (OTUs) in 16S rRNA data. Therefore, we benchmark how well the ALDEx2 package, a transformation-based DA tool, detects differential expression in high-throughput RNA-sequencing data (RNA-Seq), compared to conventional RNA-Seq methods such as edgeR and DESeq2. <br/> <b>Results:</b> To evaluate the performance of log-ratio transformation-based tools, we apply the ALDEx2 package to two simulated, and two real, RNA-Seq data sets. One of the latter was previously used to benchmark dozens of conventional RNA-Seq differential expression methods, enabling us to directly compare transformation-based approaches. We show that ALDEx2, widely used in meta-genomics research, identifies differentially expressed genes (and transcripts) from RNA-Seq data with high precision and, given sufficient sample sizes, high recall too (regardless of the alignment and quantification procedure used). Although we show that the choice in log-ratio transformation can affect performance, ALDEx2 has high precision (i.e., few false positives) across all transformations. Finally, we present a novel, iterative log-ratio transformation (now implemented in ALDEx2) that further improves performance in simulations. <br/> <b>Conclusions:</b> Our results suggest that log-ratio transformation-based methods can work to measure differential expression from RNA-Seq data, provided that certain assumptions are met. Moreover, these methods have very high precision (i.e., few false positives) in simulations and perform well on real data too. With previously demonstrated applicability to 16S rRNA data, ALDEx2 can thus serve as a single tool for data from multiple sequencing modalities.</p> | en |
dc.language | en | en |
dc.publisher | BioMed Central Ltd | en |
dc.relation.ispartof | BMC Bioinformatics | en |
dc.rights | Attribution 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.title | Benchmarking differential expression analysis tools for RNA-Seq: normalization-based vs. log-ratio transformation-based methods | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1186/s12859-018-2261-8 | en |
dc.identifier.pmid | 30021534 | en |
dcterms.accessRights | UNE Green | en |
dc.subject.keywords | CoDA | en |
dc.subject.keywords | RNA-Seq | en |
dc.subject.keywords | Compositional data | en |
dc.subject.keywords | Compositional analysis | en |
dc.subject.keywords | Biochemical Research Methods | en |
dc.subject.keywords | Biotechnology & Applied Microbiology | en |
dc.subject.keywords | Mathematical & Computational Biology | en |
dc.subject.keywords | Biochemistry & Molecular Biology | en |
dc.subject.keywords | High-throughput sequencing analysis | en |
local.contributor.firstname | Thomas P | en |
local.contributor.firstname | Tamsyn M | en |
local.contributor.firstname | Mark F | en |
local.profile.school | Poultry Hub Australia | en |
local.profile.email | tcrowle5@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | United Kingdom | en |
local.identifier.runningnumber | 274 | en |
local.format.startpage | 1 | en |
local.format.endpage | 15 | en |
local.identifier.scopusid | 85050303577 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 19 | en |
local.title.subtitle | normalization-based vs. log-ratio transformation-based methods | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | Quinn | en |
local.contributor.lastname | Crowley | en |
local.contributor.lastname | Richardson | en |
dc.identifier.staff | une-id:tcrowle5 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/51906 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Benchmarking differential expression analysis tools for RNA-Seq | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Quinn, Thomas P | en |
local.search.author | Crowley, Tamsyn M | en |
local.search.author | Richardson, Mark F | en |
local.open.fileurl | https://rune.une.edu.au/web/retrieve/5db4ea9a-c46a-4990-8e9d-b6fa9c964a96 | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.identifier.wosid | 000439143200003 | en |
local.year.published | 2018 | en |
local.fileurl.open | https://rune.une.edu.au/web/retrieve/5db4ea9a-c46a-4990-8e9d-b6fa9c964a96 | en |
local.fileurl.openpublished | https://rune.une.edu.au/web/retrieve/5db4ea9a-c46a-4990-8e9d-b6fa9c964a96 | en |
local.subject.for2020 | 310208 Translational and applied bioinformatics | en |
local.subject.seo2020 | 280118 Expanding knowledge in the mathematical sciences | en |
Appears in Collections: | Journal Article PoultryHub Australia |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
openpublished/BenchmarkingCrowley2018JournalArticle.pdf | Published version | 3.22 MB | Adobe PDF Download Adobe | View/Open |
SCOPUSTM
Citations
47
checked on Jan 4, 2025
Page view(s)
1,822
checked on Jan 12, 2025
Download(s)
56
checked on Jan 12, 2025
This item is licensed under a Creative Commons License