Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/51906
Full metadata record
DC FieldValueLanguage
dc.contributor.authorQuinn, Thomas Pen
dc.contributor.authorCrowley, Tamsyn Men
dc.contributor.authorRichardson, Mark Fen
dc.date.accessioned2022-05-03T04:23:59Z-
dc.date.available2022-05-03T04:23:59Z-
dc.date.issued2018-07-18-
dc.identifier.citationBMC Bioinformatics, v.19, p. 1-15en
dc.identifier.issn1471-2105en
dc.identifier.urihttps://hdl.handle.net/1959.11/51906-
dc.description.abstract<p><b>Background:</b> Count data generated by next-generation sequencing assays do not measure absolute transcript abundances. Instead, the data are constrained to an arbitrary "library size" by the sequencing depth of the assay, and typically must be normalized prior to statistical analysis. The constrained nature of these data means one could alternatively use a log-ratio transformation in lieu of normalization, as often done when testing for differential abundance (DA) of operational taxonomic units (OTUs) in 16S rRNA data. Therefore, we benchmark how well the ALDEx2 package, a transformation-based DA tool, detects differential expression in high-throughput RNA-sequencing data (RNA-Seq), compared to conventional RNA-Seq methods such as edgeR and DESeq2. <br/> <b>Results:</b> To evaluate the performance of log-ratio transformation-based tools, we apply the ALDEx2 package to two simulated, and two real, RNA-Seq data sets. One of the latter was previously used to benchmark dozens of conventional RNA-Seq differential expression methods, enabling us to directly compare transformation-based approaches. We show that ALDEx2, widely used in meta-genomics research, identifies differentially expressed genes (and transcripts) from RNA-Seq data with high precision and, given sufficient sample sizes, high recall too (regardless of the alignment and quantification procedure used). Although we show that the choice in log-ratio transformation can affect performance, ALDEx2 has high precision (i.e., few false positives) across all transformations. Finally, we present a novel, iterative log-ratio transformation (now implemented in ALDEx2) that further improves performance in simulations. <br/> <b>Conclusions:</b> Our results suggest that log-ratio transformation-based methods can work to measure differential expression from RNA-Seq data, provided that certain assumptions are met. Moreover, these methods have very high precision (i.e., few false positives) in simulations and perform well on real data too. With previously demonstrated applicability to 16S rRNA data, ALDEx2 can thus serve as a single tool for data from multiple sequencing modalities.</p>en
dc.languageenen
dc.publisherBioMed Central Ltden
dc.relation.ispartofBMC Bioinformaticsen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleBenchmarking differential expression analysis tools for RNA-Seq: normalization-based vs. log-ratio transformation-based methodsen
dc.typeJournal Articleen
dc.identifier.doi10.1186/s12859-018-2261-8en
dc.identifier.pmid30021534en
dcterms.accessRightsUNE Greenen
dc.subject.keywordsCoDAen
dc.subject.keywordsRNA-Seqen
dc.subject.keywordsCompositional dataen
dc.subject.keywordsCompositional analysisen
dc.subject.keywordsBiochemical Research Methodsen
dc.subject.keywordsBiotechnology & Applied Microbiologyen
dc.subject.keywordsMathematical & Computational Biologyen
dc.subject.keywordsBiochemistry & Molecular Biologyen
dc.subject.keywordsHigh-throughput sequencing analysisen
local.contributor.firstnameThomas Pen
local.contributor.firstnameTamsyn Men
local.contributor.firstnameMark Fen
local.profile.schoolPoultry Hub Australiaen
local.profile.emailtcrowle5@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited Kingdomen
local.identifier.runningnumber274en
local.format.startpage1en
local.format.endpage15en
local.identifier.scopusid85050303577en
local.peerreviewedYesen
local.identifier.volume19en
local.title.subtitlenormalization-based vs. log-ratio transformation-based methodsen
local.access.fulltextYesen
local.contributor.lastnameQuinnen
local.contributor.lastnameCrowleyen
local.contributor.lastnameRichardsonen
dc.identifier.staffune-id:tcrowle5en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/51906en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleBenchmarking differential expression analysis tools for RNA-Seqen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorQuinn, Thomas Pen
local.search.authorCrowley, Tamsyn Men
local.search.authorRichardson, Mark Fen
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/5db4ea9a-c46a-4990-8e9d-b6fa9c964a96en
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.identifier.wosid000439143200003en
local.year.published2018en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/5db4ea9a-c46a-4990-8e9d-b6fa9c964a96en
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/5db4ea9a-c46a-4990-8e9d-b6fa9c964a96en
local.subject.for2020310208 Translational and applied bioinformaticsen
local.subject.seo2020280118 Expanding knowledge in the mathematical sciencesen
Appears in Collections:Journal Article
PoultryHub Australia
Files in This Item:
2 files
File Description SizeFormat 
openpublished/BenchmarkingCrowley2018JournalArticle.pdfPublished version3.22 MBAdobe PDF
Download Adobe
View/Open
Show simple item record

SCOPUSTM   
Citations

47
checked on Jan 4, 2025

Page view(s)

1,822
checked on Jan 12, 2025

Download(s)

56
checked on Jan 12, 2025
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons