Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/51896
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCardoso, Fernando Floresen
dc.contributor.authorMatika, Oswalden
dc.contributor.authorDjikeng, Appolinaireen
dc.contributor.authorMapholi, Ntanganedzenien
dc.contributor.authorBurrow, Heather Men
dc.contributor.authorYokoo, Marcos Jun Itien
dc.contributor.authorCampos, Gabriel Soaresen
dc.contributor.authorGulias-Gomes, Claudia Cristinaen
dc.contributor.authorRiggio, Valentinaen
dc.contributor.authorPong-Wong, Ricardoen
dc.contributor.authorEngle, Baileyen
dc.contributor.authorPorto-Neto, Laercioen
dc.contributor.authorMaiwashe, Azwihangwisien
dc.contributor.authorHayes, Ben Jen
dc.date.accessioned2022-05-02T22:38:02Z-
dc.date.available2022-05-02T22:38:02Z-
dc.date.issued2021-06-23-
dc.identifier.citationFrontiers in Immunology, v.12, p. 1-11en
dc.identifier.issn1664-3224en
dc.identifier.urihttps://hdl.handle.net/1959.11/51896-
dc.description.abstractTicks cause substantial production losses for beef and dairy cattle. Cattle resistance to ticks is one of the most important factors affecting tick control, but largely neglected due to the challenge of phenotyping. In this study, we evaluate the pooling of tick resistance phenotyped reference populations from multi-country beef cattle breeds to assess the possibility of improving host resistance through multi-trait genomic selection. Data consisted of tick counts or scores assessing the number of female ticks at least 4.5 mm length and derived from seven populations, with breed, country, number of records and genotyped/phenotyped animals being respectively: Angus (AN), Brazil, 2,263, 921/1,156, Hereford (HH), Brazil, 6,615, 1,910/2,802, Brangus (BN), Brazil, 2,441, 851/851, Braford (BO), Brazil, 9,523, 3,062/4,095, Tropical Composite (TC), Australia, 229, 229/229, Brahman (BR), Australia, 675, 675/675, and Nguni (NG), South Africa, 490, 490/490. All populations were genotyped using medium density Illumina SNP BeadChips and imputed to a common high-density panel of 332,468 markers. The mean linkage disequilibrium (LD) between adjacent SNPs varied from 0.24 to 0.37 across populations and so was sufficient to allow genomic breeding values (GEBV) prediction. Correlations of LD phase between breeds were higher between composites and their founder breeds (0.81 to 0.95) and lower between NG and the other breeds (0.27 and 0.35). There was wide range of estimated heritability (0.05 and 0.42) and genetic correlation (-0.01 and 0.87) for tick resistance across the studied populations, with the largest genetic correlation observed between BN and BO. Predictive ability was improved under the old-young validation for three of the seven populations using a multi-trait approach compared to a single trait within-population prediction, while whole and partial data GEBV correlations increased in all cases, with relative improvements ranging from 3% for BO to 64% for TC. Moreover, the multi-trait analysis was useful to correct typical over-dispersion of the GEBV. Results from this study indicate that a joint genomic evaluation of AN, HH, BN, BO and BR can be readily implemented to improve tick resistance of these populations using selection on GEBV. For NG and TC additional phenotyping will be required to obtain accurate GEBV.en
dc.languageenen
dc.publisherFrontiers Research Foundationen
dc.relation.ispartofFrontiers in Immunologyen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleMultiple Country and Breed Genomic Prediction of Tick Resistance in Beef Cattleen
dc.typeJournal Articleen
dc.identifier.doi10.3389/fimmu.2021.620847en
dc.identifier.pmidMEDLINE:34248929en
dcterms.accessRightsUNE Greenen
dc.subject.keywordshost resistanceen
dc.subject.keywordsgenomic selectionen
dc.subject.keywordsticksen
dc.subject.keywordstropical adaptationen
dc.subject.keywordsImmunologyen
dc.subject.keywordsbeef cattleen
local.contributor.firstnameFernando Floresen
local.contributor.firstnameOswalden
local.contributor.firstnameAppolinaireen
local.contributor.firstnameNtanganedzenien
local.contributor.firstnameHeather Men
local.contributor.firstnameMarcos Jun Itien
local.contributor.firstnameGabriel Soaresen
local.contributor.firstnameClaudia Cristinaen
local.contributor.firstnameValentinaen
local.contributor.firstnameRicardoen
local.contributor.firstnameBaileyen
local.contributor.firstnameLaercioen
local.contributor.firstnameAzwihangwisien
local.contributor.firstnameBen Jen
local.profile.schoolUNE Business Schoolen
local.profile.emailhburrow2@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeSwitzerlanden
local.identifier.runningnumber620847en
local.format.startpage1en
local.format.endpage11en
local.identifier.scopusid85109410228en
local.peerreviewedYesen
local.identifier.volume12en
local.access.fulltextYesen
local.contributor.lastnameCardosoen
local.contributor.lastnameMatikaen
local.contributor.lastnameDjikengen
local.contributor.lastnameMapholien
local.contributor.lastnameBurrowen
local.contributor.lastnameYokooen
local.contributor.lastnameCamposen
local.contributor.lastnameGulias-Gomesen
local.contributor.lastnameRiggioen
local.contributor.lastnamePong-Wongen
local.contributor.lastnameEngleen
local.contributor.lastnamePorto-Netoen
local.contributor.lastnameMaiwasheen
local.contributor.lastnameHayesen
dc.identifier.staffune-id:hburrow2en
local.profile.orcid0000-0002-7989-0426en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/51896en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleMultiple Country and Breed Genomic Prediction of Tick Resistance in Beef Cattleen
local.relation.fundingsourcenoteBrazilian contributions and data funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico, Grant/Award Number 305102/2018-4 and Empresa Brasileira de Pesquisa Agropecuária, Grant/Award Numbers 02.12.02.008.00, 02.13.10.002, and 12.13.14.014.00. Australian contributions and data were funded through Phases 2 and 3 of the Beef Cooperative Research Centre (http://www.beefcrc.com/). Australian contributions were funded by the Commonwealth Government funding through the CRC program, Meat and Livestock Australia and the Australian Centre for International Agricultural Research. The cattle used in the research were contributed by producers from the Northern Pastoral Group, and their financial support of this project is also gratefully acknowledged. This research was funded in part by the Bill & Melinda Gates Foundation and with UK aid from the UK Foreign, Commonwealth and Development Office (Grant Agreement OPP1127286) under the auspices of the Centre for Tropical Livestock Genetics and Health (CTLGH), established jointly by the University of Edinburgh, SRUC (Scotland’s Rural College), and the International Livestock Research Institute.en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorCardoso, Fernando Floresen
local.search.authorMatika, Oswalden
local.search.authorDjikeng, Appolinaireen
local.search.authorMapholi, Ntanganedzenien
local.search.authorBurrow, Heather Men
local.search.authorYokoo, Marcos Jun Itien
local.search.authorCampos, Gabriel Soaresen
local.search.authorGulias-Gomes, Claudia Cristinaen
local.search.authorRiggio, Valentinaen
local.search.authorPong-Wong, Ricardoen
local.search.authorEngle, Baileyen
local.search.authorPorto-Neto, Laercioen
local.search.authorMaiwashe, Azwihangwisien
local.search.authorHayes, Ben Jen
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/0d0f537e-d9c4-4bad-9610-8148049dd448en
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.identifier.wosid000670252900001en
local.year.published2021en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/0d0f537e-d9c4-4bad-9610-8148049dd448en
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/0d0f537e-d9c4-4bad-9610-8148049dd448en
local.subject.for2020300302 Animal managementen
local.subject.seo2020280101 Expanding knowledge in the agricultural, food and veterinary sciencesen
Appears in Collections:Journal Article
UNE Business School
Files in This Item:
2 files
File Description SizeFormat 
openpublished/MultipleBurrow2021JournalArticle.pdfPublished version933.64 kBAdobe PDF
Download Adobe
View/Open
Show simple item record

SCOPUSTM   
Citations

19
checked on Feb 15, 2025

Page view(s)

1,124
checked on Apr 7, 2024

Download(s)

22
checked on Apr 7, 2024
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons