Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/51517
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPotgieter, Andries Ben
dc.contributor.authorGeorge-Jaeggli, Barbaraen
dc.contributor.authorChapman, Scott Cen
dc.contributor.authorLaws, Kennethen
dc.contributor.authorSuárez Cadavi, Luz Aen
dc.contributor.authorWixted, Jemimaen
dc.contributor.authorWatson, Jamesen
dc.contributor.authorEldridge, Marken
dc.contributor.authorJordan, David Ren
dc.contributor.authorHammer, Graeme Len
dc.date.accessioned2022-04-04T03:16:28Z-
dc.date.available2022-04-04T03:16:28Z-
dc.date.issued2017-09-08-
dc.identifier.citationFrontiers in Plant Science, v.8, p. 1-11en
dc.identifier.issn1664-462Xen
dc.identifier.urihttps://hdl.handle.net/1959.11/51517-
dc.description.abstract<p>Genetic improvement in sorghum breeding programs requires the assessment of adaptation traits in small-plot breeding trials across multiple environments. Many of these phenotypic assessments are made by manual measurement or visual scoring, both of which are time consuming and expensive. This limits trial size and the potential for genetic gain. In addition, these methods are typically restricted to point estimates of particular traits, such as leaf senescence or flowering and do not capture the dynamic nature of crop growth. In water-limited environments in particular, information on leaf area development over time would provide valuable insight into water use and adaptation to water scarcity during specific phenological stages of crop development. Current methods to estimate plant leaf area index (LAI) involve destructive sampling and are not practical in breeding. Unmanned aerial vehicles (UAV) and proximal-sensing technologies open new opportunities to assess these traits multiple times in large small-plot trials. We analyzed vegetation-specific crop indices obtained from a narrowband multi-spectral camera on board a UAV platform flown over a small pilot trial with 30 plots (10 genotypes randomized within 3 blocks). Due to variable emergence we were able to assess the utility of these vegetation indices to estimate canopy cover and LAI over a large range of plant densities. We found good correlations between the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI) with plant number per plot, canopy cover and LAI both during the vegetative growth phase (pre-anthesis) and at maximum canopy cover shortly after anthesis. We also analyzed the utility of time-sequence data to assess the senescence pattern of sorghum genotypes known as fast (senescent) or slow senescing (stay-green) types. The Normalized Difference Red Edge (NDRE) index which estimates leaf chlorophyll content was most useful in characterizing the leaf area dynamics/senescence patterns of contrasting genotypes. These methods to monitor dynamics of green and senesced leaf area are suitable for out-scaling to enhance phenotyping of additional crop canopy characteristics and likely crop yield responses among genotypes across large fields and multiple dates.</p>en
dc.languageenen
dc.publisherFrontiers Research Foundationen
dc.relation.ispartofFrontiers in Plant Scienceen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleMulti-Spectral Imaging from an Unmanned Aerial Vehicle Enables the Assessment of Seasonal Leaf Area Dynamics of Sorghum Breeding Linesen
dc.typeJournal Articleen
dc.identifier.doi10.3389/fpls.2017.01532en
dc.identifier.pmid28951735en
dcterms.accessRightsUNE Greenen
local.contributor.firstnameAndries Ben
local.contributor.firstnameBarbaraen
local.contributor.firstnameScott Cen
local.contributor.firstnameKennethen
local.contributor.firstnameLuz Aen
local.contributor.firstnameJemimaen
local.contributor.firstnameJamesen
local.contributor.firstnameMarken
local.contributor.firstnameDavid Ren
local.contributor.firstnameGraeme Len
local.relation.isfundedbyARCen
local.profile.schoolSchool of Science and Technologyen
local.profile.emaillsaurezc@une.edu.auen
local.output.categoryC1en
local.grant.numberCE140100015en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeSwitzerlanden
local.identifier.runningnumber1532en
local.format.startpage1en
local.format.endpage11en
local.identifier.scopusid85030851183en
local.peerreviewedYesen
local.identifier.volume8en
local.access.fulltextYesen
local.contributor.lastnamePotgieteren
local.contributor.lastnameGeorge-Jaegglien
local.contributor.lastnameChapmanen
local.contributor.lastnameLawsen
local.contributor.lastnameSuárez Cadavien
local.contributor.lastnameWixteden
local.contributor.lastnameWatsonen
local.contributor.lastnameEldridgeen
local.contributor.lastnameJordanen
local.contributor.lastnameHammeren
dc.identifier.staffune-id:lsuarezcen
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/51517en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleMulti-Spectral Imaging from an Unmanned Aerial Vehicle Enables the Assessment of Seasonal Leaf Area Dynamics of Sorghum Breeding Linesen
local.relation.fundingsourcenoteThis study was funded by the Center of Excellence for Translational Photosynthesis, the Bill & Melinda Gates Foundation (grant OPPGD1197 iMashilla "A targeted approach to sorghum improvement in moisture stress areas of Ethiopia") and a Major Equipment and Infrastructure Grant “Phenotype Sensing Platform to Enhance Plant Breeding” by the University of Queensland.en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.relation.grantdescriptionARC/CE140100015en
local.search.authorPotgieter, Andries Ben
local.search.authorGeorge-Jaeggli, Barbaraen
local.search.authorChapman, Scott Cen
local.search.authorLaws, Kennethen
local.search.authorSuárez Cadavi, Luz Aen
local.search.authorWixted, Jemimaen
local.search.authorWatson, Jamesen
local.search.authorEldridge, Marken
local.search.authorJordan, David Ren
local.search.authorHammer, Graeme Len
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/59843925-69c3-4a0e-bb77-61cfd8505fa8en
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.identifier.wosid000409534800001en
local.year.published2017-
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/59843925-69c3-4a0e-bb77-61cfd8505fa8en
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/59843925-69c3-4a0e-bb77-61cfd8505fa8en
local.subject.for2020460106 Spatial data and applicationsen
local.subject.for2020300206 Agricultural spatial analysis and modellingen
local.subject.seo2020260310 Sorghumen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
openpublished/MultiSpectralSuarezCadavid2017JournalArticle.pdfPublished version2.34 MBAdobe PDF
Download Adobe
View/Open
Show simple item record

SCOPUSTM   
Citations

140
checked on Jan 25, 2025

Page view(s)

920
checked on Jun 11, 2023

Download(s)

2
checked on Jun 11, 2023
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons