Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/51497
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Mitchell, David J | en |
dc.contributor.author | Dujon, Antoine M | en |
dc.contributor.author | Beckmann, Christa | en |
dc.contributor.author | Biro, Peter A | en |
dc.date.accessioned | 2022-03-31T01:22:26Z | - |
dc.date.available | 2022-03-31T01:22:26Z | - |
dc.date.issued | 2020-01 | - |
dc.identifier.citation | Behavioral Ecology, 31(1), p. 222-231 | en |
dc.identifier.issn | 1465-7279 | en |
dc.identifier.issn | 1045-2249 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/51497 | - |
dc.description.abstract | <p>Quantifying individual variation in labile physiological or behavioral traits often involves repeated measures through time, so as to test for consistency of individual differences (often using repeatability, "<i>R</i>") and/or individual differences in trendlines over time. Another form of temporal change in behavior is temporal autocorrelation, which predicts observations taken closely together in time to be correlated, leading to nonrandom residuals about individual temporal trendlines. Temporal autocorrelation may result from slowly changing internal states (e.g., hormone or energy levels), leading to slowly changing behavior. Autocorrelation is a well-known phenomenon, but has been largely neglected by those studying individual variation in behavior. Here, we provide two worked examples which show substantial temporal autocorrelation (<i>r</i> > 0.4) is present in spontaneous activity rates of guppies (<i>Poecilia reticulata</i>) and house mice (<i>Mus domesticus</i>) in stable laboratory conditions, even after accounting for temporal plasticity of individuals. Second, we show that ignoring autocorrelation does bias estimates of <i>R</i> and temporal reaction norm variances upwards, both in our worked examples and in separate simulations. This bias occurs due to the misestimation of individual-specific means and slopes. Given the increasing use of technologies that generate behavioral and physiological data at high sampling rates, we can now study among- and within-individual changes in behavior in more detailed ways, including autocorrelation, which we discuss from biological and methodological perspectives and provide recommendations and annotated R code to help researchers implement these models on their data.</p> | en |
dc.language | en | en |
dc.publisher | Oxford University Press | en |
dc.relation.ispartof | Behavioral Ecology | en |
dc.rights | Attribution 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.title | Temporal autocorrelation: a neglected factor in the study of behavioral repeatability and plasticity | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1093/beheco/arz180 | en |
dcterms.accessRights | Gold | en |
local.contributor.firstname | David J | en |
local.contributor.firstname | Antoine M | en |
local.contributor.firstname | Christa | en |
local.contributor.firstname | Peter A | en |
local.profile.school | School of Environmental and Rural Science | en |
local.profile.email | cbeckman@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | United States of America | en |
local.format.startpage | 222 | en |
local.format.endpage | 231 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 31 | en |
local.identifier.issue | 1 | en |
local.title.subtitle | a neglected factor in the study of behavioral repeatability and plasticity | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | Mitchell | en |
local.contributor.lastname | Dujon | en |
local.contributor.lastname | Beckmann | en |
local.contributor.lastname | Biro | en |
dc.identifier.staff | une-id:cbeckman | en |
local.profile.orcid | 0000-0002-7904-7228 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/51497 | en |
local.date.onlineversion | 2019-11-01 | - |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Temporal autocorrelation | en |
local.relation.fundingsourcenote | Equipment for the fish data was funded by an ARC Discovery grant awarded to P.A.B. | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Mitchell, David J | en |
local.search.author | Dujon, Antoine M | en |
local.search.author | Beckmann, Christa | en |
local.search.author | Biro, Peter A | en |
local.open.fileurl | https://rune.une.edu.au/web/retrieve/767b44b9-9e52-433e-9c80-2d3185195244 | en |
local.uneassociation | No | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.identifier.wosid | 000515094600030 | en |
local.year.available | 2019 | en |
local.year.published | 2020 | en |
local.fileurl.open | https://rune.une.edu.au/web/retrieve/767b44b9-9e52-433e-9c80-2d3185195244 | en |
local.fileurl.openpublished | https://rune.une.edu.au/web/retrieve/767b44b9-9e52-433e-9c80-2d3185195244 | en |
local.subject.for2020 | 310901 Animal behaviour | en |
local.subject.seo2020 | 180606 Terrestrial biodiversity | en |
Appears in Collections: | Journal Article School of Environmental and Rural Science |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
openpublished/TemporalBeckmann2020JournalArticle.pdf | Published version | 460.03 kB | Adobe PDF Download Adobe | View/Open |
SCOPUSTM
Citations
41
checked on Dec 14, 2024
Page view(s)
1,086
checked on Jun 23, 2024
Download(s)
144
checked on Jun 23, 2024
This item is licensed under a Creative Commons License