Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/51497
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMitchell, David Jen
dc.contributor.authorDujon, Antoine Men
dc.contributor.authorBeckmann, Christaen
dc.contributor.authorBiro, Peter Aen
dc.date.accessioned2022-03-31T01:22:26Z-
dc.date.available2022-03-31T01:22:26Z-
dc.date.issued2020-01-
dc.identifier.citationBehavioral Ecology, 31(1), p. 222-231en
dc.identifier.issn1465-7279en
dc.identifier.issn1045-2249en
dc.identifier.urihttps://hdl.handle.net/1959.11/51497-
dc.description.abstract<p>Quantifying individual variation in labile physiological or behavioral traits often involves repeated measures through time, so as to test for consistency of individual differences (often using repeatability, "<i>R</i>") and/or individual differences in trendlines over time. Another form of temporal change in behavior is temporal autocorrelation, which predicts observations taken closely together in time to be correlated, leading to nonrandom residuals about individual temporal trendlines. Temporal autocorrelation may result from slowly changing internal states (e.g., hormone or energy levels), leading to slowly changing behavior. Autocorrelation is a well-known phenomenon, but has been largely neglected by those studying individual variation in behavior. Here, we provide two worked examples which show substantial temporal autocorrelation (<i>r</i> > 0.4) is present in spontaneous activity rates of guppies (<i>Poecilia reticulata</i>) and house mice (<i>Mus domesticus</i>) in stable laboratory conditions, even after accounting for temporal plasticity of individuals. Second, we show that ignoring autocorrelation does bias estimates of <i>R</i> and temporal reaction norm variances upwards, both in our worked examples and in separate simulations. This bias occurs due to the misestimation of individual-specific means and slopes. Given the increasing use of technologies that generate behavioral and physiological data at high sampling rates, we can now study among- and within-individual changes in behavior in more detailed ways, including autocorrelation, which we discuss from biological and methodological perspectives and provide recommendations and annotated R code to help researchers implement these models on their data.</p>en
dc.languageenen
dc.publisherOxford University Pressen
dc.relation.ispartofBehavioral Ecologyen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleTemporal autocorrelation: a neglected factor in the study of behavioral repeatability and plasticityen
dc.typeJournal Articleen
dc.identifier.doi10.1093/beheco/arz180en
dcterms.accessRightsGolden
local.contributor.firstnameDavid Jen
local.contributor.firstnameAntoine Men
local.contributor.firstnameChristaen
local.contributor.firstnamePeter Aen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.emailcbeckman@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited States of Americaen
local.format.startpage222en
local.format.endpage231en
local.peerreviewedYesen
local.identifier.volume31en
local.identifier.issue1en
local.title.subtitlea neglected factor in the study of behavioral repeatability and plasticityen
local.access.fulltextYesen
local.contributor.lastnameMitchellen
local.contributor.lastnameDujonen
local.contributor.lastnameBeckmannen
local.contributor.lastnameBiroen
dc.identifier.staffune-id:cbeckmanen
local.profile.orcid0000-0002-7904-7228en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/51497en
local.date.onlineversion2019-11-01-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleTemporal autocorrelationen
local.relation.fundingsourcenoteEquipment for the fish data was funded by an ARC Discovery grant awarded to P.A.B.en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorMitchell, David Jen
local.search.authorDujon, Antoine Men
local.search.authorBeckmann, Christaen
local.search.authorBiro, Peter Aen
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/767b44b9-9e52-433e-9c80-2d3185195244en
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.identifier.wosid000515094600030en
local.year.available2019en
local.year.published2020en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/767b44b9-9e52-433e-9c80-2d3185195244en
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/767b44b9-9e52-433e-9c80-2d3185195244en
local.subject.for2020310901 Animal behaviouren
local.subject.seo2020180606 Terrestrial biodiversityen
Appears in Collections:Journal Article
School of Environmental and Rural Science
Files in This Item:
2 files
File Description SizeFormat 
openpublished/TemporalBeckmann2020JournalArticle.pdfPublished version460.03 kBAdobe PDF
Download Adobe
View/Open
Show simple item record

SCOPUSTM   
Citations

41
checked on Dec 14, 2024

Page view(s)

1,086
checked on Jun 23, 2024

Download(s)

144
checked on Jun 23, 2024
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons