Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/51402
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNaqvi, Syeda Ren
dc.contributor.authorHussain, Tanveeren
dc.contributor.authorLuo, Weien
dc.contributor.authorAhuja, Rajeeven
dc.date.accessioned2022-03-23T21:15:13Z-
dc.date.available2022-03-23T21:15:13Z-
dc.date.issued2018-08-02-
dc.identifier.citationNano Research, 11(7), p. 3802-3813en
dc.identifier.issn1998-0000en
dc.identifier.issn1998-0124en
dc.identifier.urihttps://hdl.handle.net/1959.11/51402-
dc.description.abstract<p>A planar honeycomb monolayer of siligraphene (SiC<sub>7</sub>) could be a prospective medium for clean energy storage due to its light weight, and its remarkable mechanical and unique electronic properties. By employing van der Waals-induced first principles calculations based on density functional theory (DFT), we have explored the structural, electronic, and hydrogen (H<sub>2</sub>) storage characteristics of SiC<sub>7</sub> sheets decorated with various light metals. The binding energies of lithium (Li), sodium (Na), potassium (K), magnesium (Mg), calcium (Ca), scandium (Sc), and titanium (Ti) dopants on a SiC<sub>7</sub> monolayer were studied at various doping concentrations, and found to be strong enough to counteract the metal clustering effect. We further verified the stabilities of the metallized SiC<sub>7</sub> sheets at room temperature using ab initio molecular dynamics (MD) simulations. Bader charge analysis revealed that upon adsorption, due to the difference in electronegativity, all the metal adatoms donated a fraction of their electronic charges to the SiC<sub>7</sub> sheet. Each partially charged metal center on the SiC<sub>7</sub> sheets could bind a maximum of 4 to 5 H<sub>2</sub> molecules. A high H<sub>2</sub> gravimetric density was achieved for several dopants at a doping concentration of 12.50%. The H<sub>2</sub> binding energies were found to fall within the ideal range of 0.2-0.6 eV. Based on these findings, we propose that metal-doped SiC<sub>7</sub> sheets can operate as efficient H<sub>2</sub> storage media under ambient conditions.</p>en
dc.languageenen
dc.publisherTsinghua University Pressen
dc.relation.ispartofNano Researchen
dc.titleMetallized siligraphene nanosheets (SiC7) as high capacity hydrogen storage materialsen
dc.typeJournal Articleen
dc.identifier.doi10.1007/s12274-017-1954-zen
dcterms.accessRightsBronzeen
local.contributor.firstnameSyeda Ren
local.contributor.firstnameTanveeren
local.contributor.firstnameWeien
local.contributor.firstnameRajeeven
local.profile.schoolSchool of Science and Technologyen
local.profile.emailthussai3@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeChinaen
local.format.startpage3802en
local.format.endpage3813en
local.identifier.scopusid85040078052en
local.peerreviewedYesen
local.identifier.volume11en
local.identifier.issue7en
local.access.fulltextYesen
local.contributor.lastnameNaqvien
local.contributor.lastnameHussainen
local.contributor.lastnameLuoen
local.contributor.lastnameAhujaen
dc.identifier.staffune-id:thussai3en
local.profile.orcid0000-0003-1973-4584en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/51402en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleMetallized siligraphene nanosheets (SiC7) as high capacity hydrogen storage materialsen
local.relation.fundingsourcenoteSwedish Research Council (VR), StandUp, Swedish Energy Agency, Swedish Institute and UQ postdoctoral fellowship schemeen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorNaqvi, Syeda Ren
local.search.authorHussain, Tanveeren
local.search.authorLuo, Weien
local.search.authorAhuja, Rajeeven
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.identifier.wosid000440731800027en
local.year.published2018en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/03d5bb0f-9614-43ff-989a-7b6cf3bd940een
local.subject.for2020340701 Computational chemistryen
local.subject.for2020510403 Condensed matter modelling and density functional theoryen
local.subject.for2020340302 Macromolecular materialsen
local.subject.seo2020170308 Hydrogen storageen
local.subject.seo2020170803 Hydro-electric energyen
local.subject.seo2020170899 Renewable energy not elsewhere classifieden
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

57
checked on Jan 18, 2025

Page view(s)

886
checked on Jun 11, 2023
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.