Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/51345
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNiaei, Amir H Farokhen
dc.contributor.authorRoman, Tanglawen
dc.contributor.authorHussain, Tanveeren
dc.contributor.authorSearles, Debra Jen
dc.date.accessioned2022-03-21T04:28:27Z-
dc.date.available2022-03-21T04:28:27Z-
dc.date.issued2019-06-20-
dc.identifier.citationThe Journal of Physical Chemistry C, 123(24), p. 14895-14908en
dc.identifier.issn1932-7455en
dc.identifier.issn1932-7447en
dc.identifier.urihttps://hdl.handle.net/1959.11/51345-
dc.description.abstract<p>Computational methods are used to show that graphene nanoribbons bind sodium (Na) and calcium (Ca) more strongly than graphene sheets. The binding strength is further enhanced by functionalizing the edge of the nanoribbon with oxygen-containing groups. Strengthening of the binding of these metal atoms to graphitic materials is important for applications including metal-ion batteries. Our results are obtained using density functional theory calculations of the binding of sodium and calcium to hydrogen, hydroxyl, carbonyl, and carboxyl groups at the edge of zigzag and armchair nanoribbons. Both hydrogen passivation and hydroxyl functionalization result in moderate binding of Na and Ca with binding energies varying from -1.0 to -1.9 eV for the nanoribbons considered. An increase in binding compared to graphene does not just occur at the edge, but extends across the nanoribbon. Furthermore, carbonyl and carboxyl groups bound both metal atoms more strongly, with binding energies between -1.6 and -3.1 eV. Increasing the number of these groups at the edge increases the binding strength of the metal adatoms. When there is a high number of oxygen-containing groups at the edge, the effect of the oxygen-containing groups is also evident away from the edge of the nanoribbon for sodium and calcium. It is demonstrated that this is at least partly due to the change in the electronic structure spanning the entire width of the nanoribbons considered.</p>en
dc.languageenen
dc.publisherAmerican Chemical Societyen
dc.relation.ispartofThe Journal of Physical Chemistry Cen
dc.titleComputational Study on the Adsorption of Sodium and Calcium on Edge-Functionalized Graphene Nanoribbonsen
dc.typeJournal Articleen
dc.identifier.doi10.1021/acs.jpcc.9b02003en
local.contributor.firstnameAmir H Farokhen
local.contributor.firstnameTanglawen
local.contributor.firstnameTanveeren
local.contributor.firstnameDebra Jen
local.relation.isfundedbyARCen
local.relation.isfundedbyARCen
local.relation.isfundedbyARCen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailthussai3@une.edu.auen
local.output.categoryC1en
local.grant.numberLE0882357en
local.grant.numberLE160100051en
local.grant.numberDP140100193en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited States of Americaen
local.format.startpage14895en
local.format.endpage14908en
local.identifier.scopusid85067379370en
local.peerreviewedYesen
local.identifier.volume123en
local.identifier.issue24en
local.contributor.lastnameNiaeien
local.contributor.lastnameRomanen
local.contributor.lastnameHussainen
local.contributor.lastnameSearlesen
dc.identifier.staffune-id:thussai3en
local.profile.orcid0000-0003-1973-4584en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/51345en
local.date.onlineversion2019-05-24-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleComputational Study on the Adsorption of Sodium and Calcium on Edge-Functionalized Graphene Nanoribbonsen
local.relation.fundingsourcenoteAustralian Government Research Training Program Scholarship (RTP)en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.relation.grantdescriptionARC/LE0882357en
local.relation.grantdescriptionARC/LE160100051en
local.relation.grantdescriptionARC/DP140100193en
local.search.authorNiaei, Amir H Farokhen
local.search.authorRoman, Tanglawen
local.search.authorHussain, Tanveeren
local.search.authorSearles, Debra Jen
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.identifier.wosid000472800500002en
local.year.available2019en
local.year.published2019en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/8d01e8d8-93ae-4302-91fe-f08c2bc6b451en
local.subject.for2020340701 Computational chemistryen
local.subject.for2020510403 Condensed matter modelling and density functional theoryen
local.subject.for2020340302 Macromolecular materialsen
local.subject.seo2020170301 Battery storageen
local.subject.seo2020170803 Hydro-electric energyen
local.subject.seo2020170899 Renewable energy not elsewhere classifieden
local.codeupdate.date2022-03-31T11:27:32.501en
local.codeupdate.epersonrtobler@une.edu.auen
local.codeupdate.finalisedtrueen
local.original.for2020340305 Physical properties of materialsen
local.original.for2020510403 Condensed matter modelling and density functional theoryen
local.original.for2020340309 Theory and design of materialsen
local.original.seo2020170803 Hydro-electric energyen
local.original.seo2020170899 Renewable energy not elsewhere classifieden
local.original.seo2020170301 Battery storageen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

22
checked on Oct 5, 2024

Page view(s)

830
checked on Mar 7, 2023

Download(s)

4
checked on Mar 7, 2023
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.