Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/50294
Title: Chalcopyrite based carbon composite electrodes for high performance symmetric supercapacitor
Contributor(s): Lokhande, A C (author); Teotia, S (author); Shelke, A R (author); Hussain, T  (author)orcid ; Qattan, I A (author); Lokhande, V C (author); Patole, Shashikant (author); Kim, J H (author); Lokhande, C D (author)
Publication Date: 2020-11-01
Early Online Version: 2020-06-02
DOI: 10.1016/j.cej.2020.125711
Handle Link: https://hdl.handle.net/1959.11/50294
Abstract: 

In the present work, we demonstrate a facile and single-step hydrothermal synthesis of chalcopyrite based carbon composite material (CuFeS2/carbon nanotubes) with the unique architecture in which the porous CuFeS2 (CFS) microflowers are encapsulated by the carbon nanotubes (CNT). The structural, morphological, compositional, chemical, vibrational and electrochemical properties of the fabricated CFS/CNT composite are analyzed in detail through comprehensive characterization techniques. When used as binder-free negative electrode material in the supercapacitor application, the CFS/CNT composite exhibits exceptional electrochemical performance than its pristine form (CFS). The electrochemical analysis clearly reveals the pseudocapacitive nature of composite electrode with improved electrical and charge-transport properties. In three-electrode configuration, the CFS/CNT composite electrode exhibits a high specific capacitance of 667F/g, a high columbic efficiency of 95% with 100% cyclic stability for 3000 cycles. The key factors influencing the supercapacitive performance of the electrodes are validated using extensive experimental results and are backed up with theoretical calculations of the relevant simulated models. The plausible storage sites of Na+ ions along with its valence charge transfer, electronic properties and binding characteristics on the composite electrode are identified through first-principles density functional theory (DFT) calculations. Furthermore, to evaluate its feasibility for practical application, a solid-state symmetric device (CFS/CNT//CFS/CNT) based on polymer gel electrolyte (PVA-Na2SO4) was fabricated. The symmetric device exhibited the highest specific capacitance of 128F/g, an energy density of 22 Wh/kg, a power density of 2083 W/kg and notable durability (94% cyclic stability for 10,000 cycles) reflecting its formidable candidature for future energy storage systems.

Publication Type: Journal Article
Source of Publication: Chemical Engineering Journal, v.399, p. 1-15
Publisher: Elsevier BV
Place of Publication: Netherlands
ISSN: 1873-3212
1385-8947
Fields of Research (FoR) 2020: 400404 Electrochemical energy storage and conversion
510403 Condensed matter modelling and density functional theory
340701 Computational chemistry
Socio-Economic Objective (SEO) 2020: 170301 Battery storage
170803 Hydro-electric energy
170899 Renewable energy not elsewhere classified
Peer Reviewed: Yes
HERDC Category Description: C1 Refereed Article in a Scholarly Journal
Appears in Collections:Journal Article
School of Science and Technology

Files in This Item:
1 files
File SizeFormat 
Show full item record

SCOPUSTM   
Citations

29
checked on Jun 1, 2024

Page view(s)

856
checked on Mar 8, 2023

Download(s)

2
checked on Mar 8, 2023
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.