Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/44123
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Maggi, Federico | en |
dc.contributor.author | Tang, Fiona H M | en |
dc.contributor.author | Riley, William J | en |
dc.date.accessioned | 2022-02-24T02:42:30Z | - |
dc.date.available | 2022-02-24T02:42:30Z | - |
dc.date.issued | 2018-05 | - |
dc.identifier.citation | International Journal of Chemical Kinetics, 50(5), p. 343-356 | en |
dc.identifier.issn | 1097-4601 | en |
dc.identifier.issn | 0538-8066 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/44123 | - |
dc.description.abstract | <p>Accurate prediction of the temperature response of the velocity v of a biochemical reaction has wide applications in cell biology, reaction design, and biomass yield enhancement. Here, we introduce a simple but comprehensive mechanistic approach that uses thermodynamics and biochemical kinetics to describe and link the reaction rate and Michaelis–Menten constants (k<sub>T</sub> and K<sub>T</sub>) with the biomass yield and mortality rate (Y<sub>T</sub> and δ<sub>T</sub>) as explicit functions of <i>T</i>. The temperature control is exerted by catabolic enthalpy at low temperatures and catabolic entropy at high temperatures, whereas changes in cell and enzyme–substrate heat capacity shift the anabolic electron use efficiency e<sub>A</sub> and the maximum reaction velocity v<sub>max</sub>. We show that cells have optimal growth when the catabolic (differential) free energy of activation decreases the cell free energy harvest required to duplicate their internal structures as long as electrons for anabolism are available. With the described approach, we accurately predicted observed glucose fermentation and ammonium nitrification dynamics across a wide temperature range with a minimal number of thermodynamics parameters, and we highlight how kinetic parameters are linked to each other using first principles.</p> | en |
dc.language | en | en |
dc.publisher | John Wiley & Sons, Inc | en |
dc.relation.ispartof | International Journal of Chemical Kinetics | en |
dc.title | The Thermodynamic Links between Substrate, Enzyme, and Microbial Dynamics in Michaelis-Menten-Monod Kinetics | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1002/kin.21163 | en |
local.contributor.firstname | Federico | en |
local.contributor.firstname | Fiona H M | en |
local.contributor.firstname | William J | en |
local.profile.school | School of Environmental and Rural Science | en |
local.profile.email | ftang2@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | United States of America | en |
local.format.startpage | 343 | en |
local.format.endpage | 356 | en |
local.identifier.scopusid | 85042208084 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 50 | en |
local.identifier.issue | 5 | en |
local.contributor.lastname | Maggi | en |
local.contributor.lastname | Tang | en |
local.contributor.lastname | Riley | en |
dc.identifier.staff | une-id:ftang2 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/44123 | en |
local.date.onlineversion | 2018-02-21 | - |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | The Thermodynamic Links between Substrate, Enzyme, and Microbial Dynamics in Michaelis-Menten-Monod Kinetics | en |
local.relation.fundingsourcenote | FM and FHMT were partly supported by the Sydney Research Excellence Initiative (SREI2020) of The University of Sydney, and by the Civil Engineering Research and Development Scheme 2015 (CERDS) of the University of Sydney. FM was also supported by the Mid-Career Research Award (MCR) and Sydney Research Accelerator (SOAR) of the University of Sydney. WJR was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research as part of the Terrestrial Ecosystem Science Program under Contract No. DE-AC02-05CH11231. | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Maggi, Federico | en |
local.search.author | Tang, Fiona H M | en |
local.search.author | Riley, William J | en |
local.uneassociation | No | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.available | 2018 | en |
local.year.published | 2018 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/d61f26c3-dbb4-43ff-8218-da37e983f9db | en |
local.subject.for2020 | 410604 Soil chemistry and soil carbon sequestration (excl. carbon sequestration science) | en |
local.subject.for2020 | 410605 Soil physics | en |
local.subject.seo2020 | 180605 Soils | en |
Appears in Collections: | Journal Article School of Environmental and Rural Science |
Files in This Item:
File | Size | Format |
---|
SCOPUSTM
Citations
6
checked on Feb 8, 2025
Page view(s)
848
checked on Mar 8, 2023
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.