Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/44123
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMaggi, Federicoen
dc.contributor.authorTang, Fiona H Men
dc.contributor.authorRiley, William Jen
dc.date.accessioned2022-02-24T02:42:30Z-
dc.date.available2022-02-24T02:42:30Z-
dc.date.issued2018-05-
dc.identifier.citationInternational Journal of Chemical Kinetics, 50(5), p. 343-356en
dc.identifier.issn1097-4601en
dc.identifier.issn0538-8066en
dc.identifier.urihttps://hdl.handle.net/1959.11/44123-
dc.description.abstract<p>Accurate prediction of the temperature response of the velocity v of a biochemical reaction has wide applications in cell biology, reaction design, and biomass yield enhancement. Here, we introduce a simple but comprehensive mechanistic approach that uses thermodynamics and biochemical kinetics to describe and link the reaction rate and Michaelis–Menten constants (k<sub>T</sub> and K<sub>T</sub>) with the biomass yield and mortality rate (Y<sub>T</sub> and δ<sub>T</sub>) as explicit functions of <i>T</i>. The temperature control is exerted by catabolic enthalpy at low temperatures and catabolic entropy at high temperatures, whereas changes in cell and enzyme–substrate heat capacity shift the anabolic electron use efficiency e<sub>A</sub> and the maximum reaction velocity v<sub>max</sub>. We show that cells have optimal growth when the catabolic (differential) free energy of activation decreases the cell free energy harvest required to duplicate their internal structures as long as electrons for anabolism are available. With the described approach, we accurately predicted observed glucose fermentation and ammonium nitrification dynamics across a wide temperature range with a minimal number of thermodynamics parameters, and we highlight how kinetic parameters are linked to each other using first principles.</p>en
dc.languageenen
dc.publisherJohn Wiley & Sons, Incen
dc.relation.ispartofInternational Journal of Chemical Kineticsen
dc.titleThe Thermodynamic Links between Substrate, Enzyme, and Microbial Dynamics in Michaelis-Menten-Monod Kineticsen
dc.typeJournal Articleen
dc.identifier.doi10.1002/kin.21163en
local.contributor.firstnameFedericoen
local.contributor.firstnameFiona H Men
local.contributor.firstnameWilliam Jen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.emailftang2@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited States of Americaen
local.format.startpage343en
local.format.endpage356en
local.identifier.scopusid85042208084en
local.peerreviewedYesen
local.identifier.volume50en
local.identifier.issue5en
local.contributor.lastnameMaggien
local.contributor.lastnameTangen
local.contributor.lastnameRileyen
dc.identifier.staffune-id:ftang2en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/44123en
local.date.onlineversion2018-02-21-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleThe Thermodynamic Links between Substrate, Enzyme, and Microbial Dynamics in Michaelis-Menten-Monod Kineticsen
local.relation.fundingsourcenoteFM and FHMT were partly supported by the Sydney Research Excellence Initiative (SREI2020) of The University of Sydney, and by the Civil Engineering Research and Development Scheme 2015 (CERDS) of the University of Sydney. FM was also supported by the Mid-Career Research Award (MCR) and Sydney Research Accelerator (SOAR) of the University of Sydney. WJR was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research as part of the Terrestrial Ecosystem Science Program under Contract No. DE-AC02-05CH11231.en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorMaggi, Federicoen
local.search.authorTang, Fiona H Men
local.search.authorRiley, William Jen
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.available2018en
local.year.published2018en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/d61f26c3-dbb4-43ff-8218-da37e983f9dben
local.subject.for2020410604 Soil chemistry and soil carbon sequestration (excl. carbon sequestration science)en
local.subject.for2020410605 Soil physicsen
local.subject.seo2020180605 Soilsen
Appears in Collections:Journal Article
School of Environmental and Rural Science
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

6
checked on Sep 28, 2024

Page view(s)

848
checked on Mar 8, 2023
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.