Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/42374
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCoast, Onoriodeen
dc.contributor.authorShah, Shahenen
dc.contributor.authorIvakov, Alexanderen
dc.contributor.authorGaju, Oorbessyen
dc.contributor.authorWilson, Philippa B.en
dc.contributor.authorPosch, Bradley Cen
dc.contributor.authorBryant, Callum Jen
dc.contributor.authorNegrini, Anna Clarissa Aen
dc.contributor.authorEvans, John R.en
dc.contributor.authorCondon, Anthony G.en
dc.contributor.authorSilva‐Pérez, Viridianaen
dc.contributor.authorReynolds, Matthew Pen
dc.contributor.authorPogson, Barry Jen
dc.contributor.authorMillar, A Harveyen
dc.contributor.authorFurbank, Robert Ten
dc.contributor.authorAtkin, Owen Ken
dc.date.accessioned2022-02-15T04:18:52Z-
dc.date.available2022-02-15T04:18:52Z-
dc.date.issued2019-07-
dc.identifier.citationPlant, Cell & Environment, 42(7), p. 2133-2150en
dc.identifier.issn1365-3040en
dc.identifier.issn0140-7791en
dc.identifier.urihttps://hdl.handle.net/1959.11/42374-
dc.description.abstract<p>Greater availability of leaf dark respiration (<i>R</i><sub>dark</sub>) data could facilitate breeding efforts to raise crop yield and improve global carbon cycle modelling. However, the availability of <i>R</i><sub>dark</sub> data is limited because it is cumbersome, time consuming, or destructive to measure. We report a non‐destructive and high‐throughput method of estimating <i>R</i><sub>dark</sub> from leaf hyperspectral reflectance data that was derived from leaf <i>R</i><sub>dark</sub> measured by a destructive high‐throughput oxygen consumption technique. We generated a large dataset of leaf <i>R</i><sub>dark</sub> for wheat (1380 samples) from 90 genotypes, multiple growth stages, and growth conditions to generate models for <i>R</i><sub>dark</sub>. Leaf <i>R</i><sub>dark</sub> (per unit leaf area, fresh mass, dry mass or nitrogen, N) varied 7‐ to 15‐fold among individual plants, whereas traits known to scale with <i>R</i><sub>dark</sub>, leaf N, and leaf mass per area (LMA) only varied twofold to fivefold. Our models predicted leaf <i>R</i><sub>dark</sub>, N, and LMA with <i>r</i><sup>2</sup> values of 0.50–0.63, 0.91, and 0.75, respectively, and relative bias of 17–18% for <i>R</i><sub>dark</sub> and 7–12% for N and LMA. Our results suggest that hyperspectral model prediction of wheat leaf <i>R</i><sub>dark</sub> is largely independent of leaf N and LMA. Potential drivers of hyperspectral signatures of <i>R</i><sub>dark</sub> are discussed.</p>en
dc.languageenen
dc.publisherWiley-Blackwell Publishing Ltden
dc.relation.ispartofPlant, Cell & Environmenten
dc.titlePredicting dark respiration rates of wheat leaves from hyperspectral reflectanceen
dc.typeJournal Articleen
dc.identifier.doi10.1111/pce.13544en
dc.identifier.pmid30835839en
local.contributor.firstnameOnoriodeen
local.contributor.firstnameShahenen
local.contributor.firstnameAlexanderen
local.contributor.firstnameOorbessyen
local.contributor.firstnamePhilippa B.en
local.contributor.firstnameBradley Cen
local.contributor.firstnameCallum Jen
local.contributor.firstnameAnna Clarissa Aen
local.contributor.firstnameJohn R.en
local.contributor.firstnameAnthony G.en
local.contributor.firstnameViridianaen
local.contributor.firstnameMatthew Pen
local.contributor.firstnameBarry Jen
local.contributor.firstnameA Harveyen
local.contributor.firstnameRobert Ten
local.contributor.firstnameOwen Ken
local.relation.isfundedbyARCen
local.relation.isfundedbyARCen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.emailocoast@une.edu.auen
local.output.categoryC1en
local.grant.numberCE1401000015en
local.grant.numberCE140100008en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited Kingdomen
local.format.startpage2133en
local.format.endpage2150en
local.identifier.scopusid85063583746en
local.peerreviewedYesen
local.identifier.volume42en
local.identifier.issue7en
local.contributor.lastnameCoasten
local.contributor.lastnameShahen
local.contributor.lastnameIvakoven
local.contributor.lastnameGajuen
local.contributor.lastnameWilsonen
local.contributor.lastnamePoschen
local.contributor.lastnameBryanten
local.contributor.lastnameNegrinien
local.contributor.lastnameEvansen
local.contributor.lastnameCondonen
local.contributor.lastnameSilva‐Pérezen
local.contributor.lastnameReynoldsen
local.contributor.lastnamePogsonen
local.contributor.lastnameMillaren
local.contributor.lastnameFurbanken
local.contributor.lastnameAtkinen
dc.identifier.staffune-id:ocoasten
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/42374en
local.date.onlineversion2019-03-05-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitlePredicting dark respiration rates of wheat leaves from hyperspectral reflectanceen
local.relation.fundingsourcenoteAustralian Government Endeavour Fellowship; International Wheat Yield Partnership, and Grains Research Development Council, Grant/Award Number: ANU00027; Australian Government National Collaborative Research Infrastructure Strategy (Australian Plant Phenomics Facility). We acknowledge the Endeavour Fellowship awarded to S.S. for which part of this research was developed.en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.relation.grantdescriptionARC/CE1401000015en
local.relation.grantdescriptionARC/CE140100008en
local.search.authorCoast, Onoriodeen
local.search.authorShah, Shahenen
local.search.authorIvakov, Alexanderen
local.search.authorGaju, Oorbessyen
local.search.authorWilson, Philippa B.en
local.search.authorPosch, Bradley Cen
local.search.authorBryant, Callum Jen
local.search.authorNegrini, Anna Clarissa Aen
local.search.authorEvans, John R.en
local.search.authorCondon, Anthony G.en
local.search.authorSilva‐Pérez, Viridianaen
local.search.authorReynolds, Matthew Pen
local.search.authorPogson, Barry Jen
local.search.authorMillar, A Harveyen
local.search.authorFurbank, Robert Ten
local.search.authorAtkin, Owen Ken
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.available2019en
local.year.published2019en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/42ee97e5-99c5-4faf-9722-338439789279en
local.subject.for2020300404 Crop and pasture biochemistry and physiologyen
local.subject.for2020310806 Plant physiologyen
local.subject.seo2020260312 Wheaten
local.subject.seo2020180601 Assessment and management of terrestrial ecosystemsen
Appears in Collections:Journal Article
School of Environmental and Rural Science
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

56
checked on Jan 25, 2025

Page view(s)

1,122
checked on Nov 12, 2023

Download(s)

2
checked on Nov 12, 2023
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.