Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/42209
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Bagheri, Ali | en |
dc.contributor.author | Bainbridge, Chris | en |
dc.contributor.author | Jin, Jianyong | en |
dc.date.accessioned | 2022-02-14T02:17:09Z | - |
dc.date.available | 2022-02-14T02:17:09Z | - |
dc.date.issued | 2019-07-12 | - |
dc.identifier.citation | ACS Applied Polymer Materials, 1(7), p. 1896-1904 | en |
dc.identifier.issn | 2637-6105 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/42209 | - |
dc.description.abstract | <p>Light-responsive polymeric networks have shown diverse applications as spatiotemporally tunable materials. Herein, we present a straightforward and facile strategy to fabricate photoexpandable/transformable-polymer networks (PET-PNs) that can undergo a growth mechanism via visible light-induced radical polymerization. Our PET-PN fabrication and its subsequent photogrowth process is based on using a trithiocarbonate chain transfer agent, dibenzyl trithiocarbonate (DBTTC), that can be activated by either photoredox catalysis or direct photolysis (photoiniferter) mechanisms. We first demonstrated the use of a photoredox catalyst (5,10,15,20-tetraphenyl-21H,23H-porphine zinc (ZnTPP) for initiating the reversible addition-fragmentation chain-transfer (RAFT) polymerization of a cross-linkable system consisting of difunctional monomers (i.e., tetra(ethylene glycol) diacrylate (TEGDA)) alongside with a monofunctional monomer (i.e., oligo(ethylene glycol) methyl ether acrylate) (OEGA)) under red LED light (λ <sub>max</sub> = 635 nm, 0.7 mW/cm<sup>2</sup>) to fabricate polymer networks. Photogrowth of these networks were achieved through a photoredox-catalyzed insertion of new monomers (such as OEGA) into the network strands when exposed to red LED light. We further investigated the photoiniferter properties of DBTTC for the formation and subsequent photogrowth of polymer networks via direct photolysis under blue LED light (λ <sub>max</sub> = 460 nm, 0.7 mW/cm<sup>2</sup>) without the presence of external initiators or catalysts. Visible light-induced monomer insertion and photogrowth of the parent networks were demonstrated by measuring the mass increase and the swelling capacity of the networks. Finally, we demonstrated the facile light-induced welding of networks, suggesting that our simple PET-PN system facilitates fabrication of reprocessable materials.</p> | en |
dc.language | en | en |
dc.publisher | American Chemical Society | en |
dc.relation.ispartof | ACS Applied Polymer Materials | en |
dc.title | Visible Light-Induced Transformation of Polymer Networks | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1021/acsapm.9b00458 | en |
local.contributor.firstname | Ali | en |
local.contributor.firstname | Chris | en |
local.contributor.firstname | Jianyong | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | abagheri@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | United States of America | en |
local.format.startpage | 1896 | en |
local.format.endpage | 1904 | en |
local.identifier.scopusid | 85075295131 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 1 | en |
local.identifier.issue | 7 | en |
local.contributor.lastname | Bagheri | en |
local.contributor.lastname | Bainbridge | en |
local.contributor.lastname | Jin | en |
dc.identifier.staff | une-id:abagheri | en |
local.profile.orcid | 0000-0003-3484-5856 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/42209 | en |
local.date.onlineversion | 2019-06-17 | - |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Visible Light-Induced Transformation of Polymer Networks | en |
local.relation.fundingsourcenote | J.J. and A.B. would like to thank the New Zealand Ministry of Business, Innovation and Employment (MBIE) Endeavour Fund for funding the Advanced Laser Microfabrication for NZ Industries Research Programme (Grant UOAX-1701). | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Bagheri, Ali | en |
local.search.author | Bainbridge, Chris | en |
local.search.author | Jin, Jianyong | en |
local.uneassociation | No | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.available | 2019 | en |
local.year.published | 2019 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/a803505a-4122-49dd-86c5-a9937e7f1cec | en |
local.subject.for2020 | 340302 Macromolecular materials | en |
local.subject.seo2020 | 120304 Polymeric materials and paints | en |
local.subject.seo2020 | 280105 Expanding knowledge in the chemical sciences | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Size | Format |
---|
SCOPUSTM
Citations
35
checked on Nov 9, 2024
Page view(s)
840
checked on Mar 7, 2023
Download(s)
2
checked on Mar 7, 2023
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.