Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/42077
Title: Synthesis of Light-Responsive Pyrene-Based Polymer Nanoparticles via Polymerization-Induced Self-Assembly
Contributor(s): Bagheri, Ali  (author)orcid ; Boyer, Cyrille (author); Lim, May (author)
Publication Date: 2019-01
Early Online Version: 2018-09-03
DOI: 10.1002/marc.201800510
Handle Link: https://hdl.handle.net/1959.11/42077
Abstract: The use of an in situ, one-pot polymerization-induced self-assembly method to synthesize light-responsive pyrene-containing nanoparticles is reported. The strategy is based on the chain extension of a hydrophilic macromolecular chain transfer agent, poly(oligo(ethylene glycol) methyl ether methacrylate), using a light-responsive monomer, 1-pyrenemethyl methacrylate (PyMA), via a reversible addition-fragmentation chain transfer dispersion polymerization; yielding nanoparticles of various morphologies (spherical micelles and worm-like micelles). In this process, addition of comonomers, such as butyl methacrylate (BuMA) or methyl methacrylate (MMA), are required to obtain high PyMA monomer conversion (>80% in 24 h). The addition of comonomers reduces the π-π stacking of the pyrene moieties, which facilitates the diffusion of monomers in the nanoparticle core. The addition of BuMA (as a comonomer) offers P(PyMA-co-BuMA) core-forming chains with high mobility that enables the reorganization of chains and then the evolution of morphology to form vesicles. In contrast, when MMA comonomer is used, kinetically trapped spheres are obtained; this is due to the low mobility of the core-forming chains inhibiting in situ morphological evolution. Finally, the UV-light-induced dissociation of these light-responsive nanoparticles due to the gradual cleavage of the pyrene moieties and the subsequent hydrophobic-to-hydrophilic transitions of the core-forming blocks is demonstrated.
Publication Type: Journal Article
Source of Publication: Macromolecular Rapid Communications, 40(2), p. 1-7
Publisher: Wiley-VCH Verlag GmbH & Co KGaA
Place of Publication: Germany
ISSN: 1521-3927
1022-1336
Fields of Research (FoR) 2020: 340302 Macromolecular materials
Socio-Economic Objective (SEO) 2020: 120304 Polymeric materials and paints
280105 Expanding knowledge in the chemical sciences
Peer Reviewed: Yes
HERDC Category Description: C1 Refereed Article in a Scholarly Journal
Appears in Collections:Journal Article
School of Science and Technology

Files in This Item:
1 files
File SizeFormat 
Show full item record

SCOPUSTM   
Citations

34
checked on Nov 2, 2024

Page view(s)

842
checked on Mar 7, 2023

Download(s)

2
checked on Mar 7, 2023
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.