Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/38117
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Torgbor, Benjamin Adjah | en |
dc.contributor.author | Rahman, Muhammad Moshiur | en |
dc.contributor.author | Robson, Andrew | en |
dc.contributor.author | Brinkhoff, James | en |
dc.contributor.author | Khan, Azeem | en |
dc.date.accessioned | 2022-01-31T22:07:20Z | - |
dc.date.available | 2022-01-31T22:07:20Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Horticulturae, 8(1), p. 1-17 | en |
dc.identifier.issn | 2311-7524 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/38117 | - |
dc.description.abstract | <p>In 2020, mango (<i>Mangifera indica</i>) exports contributed over 40 million tons, worth around US$20 billion, to the global economy. Only 10% of this contribution was made from African countries including Ghana, largely due to lower investment in the sector and general paucity of research into the mango value chain, especially production, quality and volume. Considering the global economic importance of mango coupled with the gap in the use of the remote sensing technology in the sector, this study tested the hypothesis that phenological stages of mango can be retrieved from Sentinel-2 (S2) derived time series vegetation indices (VIs) data. The study was conducted on four mango farms in the Yilo Krobo Municipal Area of Ghana. Seasonal (temporal) growth curves using four VIs (NDVI, GNDVI, EVI and SAVI) for the period from 2017 to 2020 were derived for each of the selected orchards and then aligned with five known phenology stages: Flowering/Fruitset (F/FS), Fruit Development (FRD), Maturity/Harvesting (M/H), Flushing (FLU) and Dormancy (D). The significance of the variation "within" and "between" farms obtained from the VI metrics of the S2 data were tested using single-factor and two-factor analysis of variance (ANOVA). Furthermore, to identify which specific variable pairs (phenology stages) were significantly different, a Tukey honest significant difference (HSD) post-hoc test was conducted, following the results of the ANOVA. Whilst it was possible to differentiate the phenological stages using all the four VIs, EVI was found to be the best related with <i>p</i> < 0.05 for most of the studied farms. A distinct annual trend was identified with a peak in June/July and troughs in December/January. The derivation of remote sensing based 'time series' growth profiles for commercial mango orchards supports the 'benchmarking' of annual and seasonal orchard performance and therefore offers a near 'real time' technology for identifying significant variations resulting from pest and disease incursions and the potential impacts of seasonal weather variations.</p> | en |
dc.language | en | en |
dc.publisher | MDPI AG | en |
dc.relation.ispartof | Horticulturae | en |
dc.rights | Attribution 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.title | Assessing the Potential of Sentinel-2 Derived Vegetation Indices to Retrieve Phenological Stages of Mango in Ghana | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.3390/horticulturae8010011 | en |
dcterms.accessRights | UNE Green | en |
local.contributor.firstname | Benjamin Adjah | en |
local.contributor.firstname | Muhammad Moshiur | en |
local.contributor.firstname | Andrew | en |
local.contributor.firstname | James | en |
local.contributor.firstname | Azeem | en |
local.profile.school | School of Science and Technology | en |
local.profile.school | School of Science and Technology | en |
local.profile.school | School of Science and Technology | en |
local.profile.school | School of Science and Technology | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | btorgbor@myune.edu.au | en |
local.profile.email | mrahma37@une.edu.au | en |
local.profile.email | arobson7@une.edu.au | en |
local.profile.email | jbrinkho@une.edu.au | en |
local.profile.email | mkhan64@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | Switzerland | en |
local.identifier.runningnumber | 11 | en |
local.format.startpage | 1 | en |
local.format.endpage | 17 | en |
local.identifier.scopusid | 85123713020 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 8 | en |
local.identifier.issue | 1 | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | Torgbor | en |
local.contributor.lastname | Rahman | en |
local.contributor.lastname | Robson | en |
local.contributor.lastname | Brinkhoff | en |
local.contributor.lastname | Khan | en |
dc.identifier.staff | une-id:btorgbor | en |
dc.identifier.staff | une-id:mrahma37 | en |
dc.identifier.staff | une-id:arobson7 | en |
dc.identifier.staff | une-id:jbrinkho | en |
dc.identifier.staff | une-id:mkhan64 | en |
local.profile.orcid | 0000-0002-9017-6821 | en |
local.profile.orcid | 0000-0001-6430-0588 | en |
local.profile.orcid | 0000-0001-5762-8980 | en |
local.profile.orcid | 0000-0002-0721-2458 | en |
local.profile.orcid | 0000-0001-8932-4578 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/38117 | en |
local.date.onlineversion | 2021-12-22 | - |
dc.identifier.academiclevel | Student | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Assessing the Potential of Sentinel-2 Derived Vegetation Indices to Retrieve Phenological Stages of Mango in Ghana | en |
local.relation.fundingsourcenote | Remote Sensing scholarship granted by the Applied Agricultural Remote Sensing Centre (AARSC) of the University of New England, Australia. | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Torgbor, Benjamin Adjah | en |
local.search.author | Rahman, Muhammad Moshiur | en |
local.search.author | Robson, Andrew | en |
local.search.author | Brinkhoff, James | en |
local.search.author | Khan, Azeem | en |
local.open.fileurl | https://rune.une.edu.au/web/retrieve/574abc96-dc47-4722-849d-b67e97bb4a22 | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.identifier.wosid | 000747275200001 | en |
local.year.available | 2021 | - |
local.year.published | 2022 | - |
local.fileurl.open | https://rune.une.edu.au/web/retrieve/574abc96-dc47-4722-849d-b67e97bb4a22 | en |
local.fileurl.openpublished | https://rune.une.edu.au/web/retrieve/574abc96-dc47-4722-849d-b67e97bb4a22 | en |
local.subject.for2020 | 300207 Agricultural systems analysis and modelling | en |
local.subject.for2020 | 300802 Horticultural crop growth and development | en |
local.subject.seo2020 | 260513 Stone fruit (excl. avocado) | en |
local.subject.seo2020 | 260516 Tropical fruit | en |
local.codeupdate.date | 2022-02-09T16:49:35.506 | en |
local.codeupdate.eperson | mrahma37@une.edu.au | en |
local.codeupdate.finalised | true | en |
local.original.for2020 | 300802 Horticultural crop growth and development | en |
local.original.for2020 | 300207 Agricultural systems analysis and modelling | en |
local.original.for2020 | 300206 Agricultural spatial analysis and modelling | en |
local.original.seo2020 | 260516 Tropical fruit | en |
local.original.seo2020 | 260513 Stone fruit (excl. avocado) | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
openpublished/AssessingTorgborRahmanRobsonBrinkhoffKhan2022JournalArticle.pdf | Published version | 1.61 MB | Adobe PDF Download Adobe | View/Open |
SCOPUSTM
Citations
15
checked on Dec 14, 2024
Page view(s)
1,798
checked on Aug 3, 2024
Download(s)
92
checked on Aug 3, 2024
This item is licensed under a Creative Commons License