Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/31933
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSadgrove, Edmund Jen
dc.contributor.authorFalzon, Gregen
dc.contributor.authorMiron, Daviden
dc.contributor.authorLamb, David Wen
dc.date.accessioned2021-11-16T04:34:33Z-
dc.date.available2021-11-16T04:34:33Z-
dc.date.issued2021-11-
dc.identifier.citationAgronomy, 11(11), p. 1-16en
dc.identifier.issn2073-4395en
dc.identifier.urihttps://hdl.handle.net/1959.11/31933-
dc.descriptionThis article belongs to the Special Issue Data-Driven Agricultural Innovations.en
dc.description.abstract<p>This study presents the Segmented Colour Feature Extreme Learning Machine (SCF-ELM). The SCF-ELM is inspired by the Extreme Learning Machine (ELM) which is known for its rapid training and inference times. The ELM is therefore an ideal candidate for an ensemble learning algorithm. The Colour Feature Extreme Learning Machine (CF-ELM) is used in this study due to its additional ability to extract colour image features. The SCF-ELM is an ensemble learner that utilizes feature mapping via k-means clustering, a decision matrix and majority voting. It has been evaluated on a range of challenging agricultural object classification scenarios including weed, livestock and machinery detection. SCF-ELM model performance results were excellent both in terms of detection, 90 to 99% accuracy, and also inference times, around 0.01(s) per image. The SCF-ELM was able to compete or improve upon established algorithms in its class, indicating its potential for remote computing applications in agriculture.</p>en
dc.languageenen
dc.publisherMDPI AGen
dc.relation.ispartofAgronomyen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleThe Segmented Colour Feature Extreme Learning Machine: Applications in Agricultural Roboticsen
dc.typeJournal Articleen
dc.identifier.doi10.3390/agronomy11112290en
dcterms.accessRightsUNE Greenen
local.contributor.firstnameEdmund Jen
local.contributor.firstnameGregen
local.contributor.firstnameDaviden
local.contributor.firstnameDavid Wen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolResearch Servicesen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailesadgro2@une.edu.auen
local.profile.emailgfalzon2@une.edu.auen
local.profile.emaildmiron@une.edu.auen
local.profile.emaildlamb@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeSwitzerlanden
local.format.startpage1en
local.format.endpage16en
local.identifier.scopusid85119674281en
local.peerreviewedYesen
local.identifier.volume11en
local.identifier.issue11en
local.title.subtitleApplications in Agricultural Roboticsen
local.access.fulltextYesen
local.contributor.lastnameSadgroveen
local.contributor.lastnameFalzonen
local.contributor.lastnameMironen
local.contributor.lastnameLamben
dc.identifier.staffune-id:esadgro2en
dc.identifier.staffune-id:gfalzon2en
dc.identifier.staffune-id:dmironen
dc.identifier.staffune-id:dlamben
local.profile.orcid0000-0002-8710-9900en
local.profile.orcid0000-0002-1989-9357en
local.profile.orcid0000-0003-2157-5439en
local.profile.orcid0000-0002-2917-2231en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/31933en
local.date.onlineversion2021-11-12-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleThe Segmented Colour Feature Extreme Learning Machineen
local.relation.fundingsourcenoteCooperative Research Centres Project (CRC-P) Grant from the Australian Government. E. Sadgrove was supported by an Australian Government Research Training Program (RTP) stipend.en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorSadgrove, Edmund Jen
local.search.authorFalzon, Gregen
local.search.authorMiron, Daviden
local.search.authorLamb, David Wen
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/54fba4ff-f410-4a4b-badd-e7f73f00f260en
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.identifier.wosid000725804300001en
local.year.available2021en
local.year.published2021en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/54fba4ff-f410-4a4b-badd-e7f73f00f260en
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/54fba4ff-f410-4a4b-badd-e7f73f00f260en
local.subject.for2020460304 Computer visionen
local.subject.for2020300299 Agriculture, land and farm management not elsewhere classifieden
local.subject.for2020461104 Neural networksen
local.subject.seo2020100503 Native and residual pasturesen
local.subject.seo2020241001 Industrial instrumentsen
local.subject.seo2020220403 Artificial intelligenceen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
openpublished/TheSegmentedSadgroveFalzonMironLamb2021JournalArticle.pdfPublished version941.6 kBAdobe PDF
Download Adobe
View/Open
Show simple item record

SCOPUSTM   
Citations

6
checked on Jan 4, 2025

Page view(s)

1,646
checked on Jul 21, 2024

Download(s)

40
checked on Jul 21, 2024
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons