Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/31933
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Sadgrove, Edmund J | en |
dc.contributor.author | Falzon, Greg | en |
dc.contributor.author | Miron, David | en |
dc.contributor.author | Lamb, David W | en |
dc.date.accessioned | 2021-11-16T04:34:33Z | - |
dc.date.available | 2021-11-16T04:34:33Z | - |
dc.date.issued | 2021-11 | - |
dc.identifier.citation | Agronomy, 11(11), p. 1-16 | en |
dc.identifier.issn | 2073-4395 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/31933 | - |
dc.description | This article belongs to the Special Issue Data-Driven Agricultural Innovations. | en |
dc.description.abstract | <p>This study presents the Segmented Colour Feature Extreme Learning Machine (SCF-ELM). The SCF-ELM is inspired by the Extreme Learning Machine (ELM) which is known for its rapid training and inference times. The ELM is therefore an ideal candidate for an ensemble learning algorithm. The Colour Feature Extreme Learning Machine (CF-ELM) is used in this study due to its additional ability to extract colour image features. The SCF-ELM is an ensemble learner that utilizes feature mapping via k-means clustering, a decision matrix and majority voting. It has been evaluated on a range of challenging agricultural object classification scenarios including weed, livestock and machinery detection. SCF-ELM model performance results were excellent both in terms of detection, 90 to 99% accuracy, and also inference times, around 0.01(s) per image. The SCF-ELM was able to compete or improve upon established algorithms in its class, indicating its potential for remote computing applications in agriculture.</p> | en |
dc.language | en | en |
dc.publisher | MDPI AG | en |
dc.relation.ispartof | Agronomy | en |
dc.rights | Attribution 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.title | The Segmented Colour Feature Extreme Learning Machine: Applications in Agricultural Robotics | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.3390/agronomy11112290 | en |
dcterms.accessRights | UNE Green | en |
local.contributor.firstname | Edmund J | en |
local.contributor.firstname | Greg | en |
local.contributor.firstname | David | en |
local.contributor.firstname | David W | en |
local.profile.school | School of Science and Technology | en |
local.profile.school | School of Science and Technology | en |
local.profile.school | Research Services | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | esadgro2@une.edu.au | en |
local.profile.email | gfalzon2@une.edu.au | en |
local.profile.email | dmiron@une.edu.au | en |
local.profile.email | dlamb@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | Switzerland | en |
local.format.startpage | 1 | en |
local.format.endpage | 16 | en |
local.identifier.scopusid | 85119674281 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 11 | en |
local.identifier.issue | 11 | en |
local.title.subtitle | Applications in Agricultural Robotics | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | Sadgrove | en |
local.contributor.lastname | Falzon | en |
local.contributor.lastname | Miron | en |
local.contributor.lastname | Lamb | en |
dc.identifier.staff | une-id:esadgro2 | en |
dc.identifier.staff | une-id:gfalzon2 | en |
dc.identifier.staff | une-id:dmiron | en |
dc.identifier.staff | une-id:dlamb | en |
local.profile.orcid | 0000-0002-8710-9900 | en |
local.profile.orcid | 0000-0002-1989-9357 | en |
local.profile.orcid | 0000-0003-2157-5439 | en |
local.profile.orcid | 0000-0002-2917-2231 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/31933 | en |
local.date.onlineversion | 2021-11-12 | - |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | The Segmented Colour Feature Extreme Learning Machine | en |
local.relation.fundingsourcenote | Cooperative Research Centres Project (CRC-P) Grant from the Australian Government. E. Sadgrove was supported by an Australian Government Research Training Program (RTP) stipend. | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Sadgrove, Edmund J | en |
local.search.author | Falzon, Greg | en |
local.search.author | Miron, David | en |
local.search.author | Lamb, David W | en |
local.open.fileurl | https://rune.une.edu.au/web/retrieve/54fba4ff-f410-4a4b-badd-e7f73f00f260 | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.identifier.wosid | 000725804300001 | en |
local.year.available | 2021 | en |
local.year.published | 2021 | en |
local.fileurl.open | https://rune.une.edu.au/web/retrieve/54fba4ff-f410-4a4b-badd-e7f73f00f260 | en |
local.fileurl.openpublished | https://rune.une.edu.au/web/retrieve/54fba4ff-f410-4a4b-badd-e7f73f00f260 | en |
local.subject.for2020 | 460304 Computer vision | en |
local.subject.for2020 | 300299 Agriculture, land and farm management not elsewhere classified | en |
local.subject.for2020 | 461104 Neural networks | en |
local.subject.seo2020 | 100503 Native and residual pastures | en |
local.subject.seo2020 | 241001 Industrial instruments | en |
local.subject.seo2020 | 220403 Artificial intelligence | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
openpublished/TheSegmentedSadgroveFalzonMironLamb2021JournalArticle.pdf | Published version | 941.6 kB | Adobe PDF Download Adobe | View/Open |
SCOPUSTM
Citations
6
checked on Jan 4, 2025
Page view(s)
1,646
checked on Jul 21, 2024
Download(s)
40
checked on Jul 21, 2024
This item is licensed under a Creative Commons License