Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/31868
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Rennie, Adam | en |
dc.contributor.author | Robertson, David | en |
dc.contributor.author | Sims, Aidan | en |
dc.date.accessioned | 2021-11-10T22:00:44Z | - |
dc.date.available | 2021-11-10T22:00:44Z | - |
dc.date.issued | 2017-02-23 | - |
dc.identifier.citation | Mathematica Scandinavica, 120(1), p. 115-123 | en |
dc.identifier.issn | 1903-1807 | en |
dc.identifier.issn | 0025-5521 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/31868 | - |
dc.description.abstract | <p>We show that if <i>G</i> is a second countable locally compact Hausdorff étale groupoid carrying a suitable cocycle <i>c</i>:<i>G</i> → ℤ, then the reduced <i>C</i>*-algebra of <i>G</i> can be realised naturally as the Cuntz-Pimsner algebra of a correspondence over the reduced <i>C</i>*-algebra of the kernel <i>G</i><sub>0</sub> of <i>c</i>. If the full and reduced <i>C</i>*-algebras of <i>G</i><sub>0</sub> coincide, we deduce that the full and reduced <i>C</i>*-algebras of <i>G</i> coincide. We obtain a six-term exact sequence describing the <i>K</i>-theory of <i>C</i>*<sub>r</sub> (<i>G</i>) in terms of that of <i>C</i>*<sub>r</sub> (<i>G</i><sub>0</sub>).</p> | en |
dc.language | en | en |
dc.publisher | Aarhus Universitet, Mathematica Scandinavica | en |
dc.relation.ispartof | Mathematica Scandinavica | en |
dc.title | Groupoid algebras as Cuntz-Pimsner algebras | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.7146/math.scand.a-25507 | en |
local.contributor.firstname | Adam | en |
local.contributor.firstname | David | en |
local.contributor.firstname | Aidan | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | drober54@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | Denmark | en |
local.format.startpage | 115 | en |
local.format.endpage | 123 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 120 | en |
local.identifier.issue | 1 | en |
local.contributor.lastname | Rennie | en |
local.contributor.lastname | Robertson | en |
local.contributor.lastname | Sims | en |
dc.identifier.staff | une-id:drober54 | en |
local.profile.orcid | 0000-0002-0425-4775 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/31868 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Groupoid algebras as Cuntz-Pimsner algebras | en |
local.relation.fundingsourcenote | This research was supported by the Australian Research Council. | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Rennie, Adam | en |
local.search.author | Robertson, David | en |
local.search.author | Sims, Aidan | en |
local.uneassociation | No | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.identifier.wosid | 000399628700007 | en |
local.year.published | 2017 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/0d257afe-48e3-42d3-b7f4-073db26d17cd | en |
local.subject.for2020 | 490408 Operator algebras and functional analysis | en |
local.subject.seo2020 | 280118 Expanding knowledge in the mathematical sciences | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Size | Format |
---|
SCOPUSTM
Citations
6
checked on Jan 11, 2025
Page view(s)
1,146
checked on Jul 23, 2023
Download(s)
6
checked on Jul 23, 2023
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.