Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/31862
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Robertson, David | en |
dc.contributor.author | Rout, James | en |
dc.contributor.author | Sims, Aidan | en |
dc.date.accessioned | 2021-11-10T04:56:00Z | - |
dc.date.available | 2021-11-10T04:56:00Z | - |
dc.date.issued | 2018-01 | - |
dc.identifier.citation | Bulletin of the Malaysian Mathematical Sciences Society, 41(1), p. 123-157 | en |
dc.identifier.issn | 2180-4206 | en |
dc.identifier.issn | 0126-6705 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/31862 | - |
dc.description.abstract | <p>We study the generalised Bunce-Deddens algebras and their Toeplitz extensions constructed by Kribs and Solel from a directed graph and a sequence ω of positive integers. We describe both of these C*-algebras in terms of novel universal properties, and prove uniqueness theorems for them; if ω determines an infinite supernatural number, then no aperiodicity hypothesis is needed in our uniqueness theorem for the generalised Bunce-Deddens algebra. We calculate the KMS states for the gauge action in the Toeplitz algebra when the underlying graph is finite. We deduce that the generalised Bunce-Deddens algebra is simple if and only if it supports exactly one KMS state, and this is equivalent to the terms in the sequence ω all being coprime with the period of the underlying graph.</p> | en |
dc.language | en | en |
dc.publisher | Springer | en |
dc.relation.ispartof | Bulletin of the Malaysian Mathematical Sciences Society | en |
dc.title | KMS States on Generalised Bunce-Deddens Algebras and their Toeplitz Extensions | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1007/s40840-015-0244-8 | en |
local.contributor.firstname | David | en |
local.contributor.firstname | James | en |
local.contributor.firstname | Aidan | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | drober54@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | Germany | en |
local.format.startpage | 123 | en |
local.format.endpage | 157 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 41 | en |
local.identifier.issue | 1 | en |
local.contributor.lastname | Robertson | en |
local.contributor.lastname | Rout | en |
local.contributor.lastname | Sims | en |
dc.identifier.staff | une-id:drober54 | en |
local.profile.orcid | 0000-0002-0425-4775 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/31862 | en |
local.date.onlineversion | 2015-11-25 | - |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | KMS States on Generalised Bunce-Deddens Algebras and their Toeplitz Extensions | en |
local.relation.fundingsourcenote | This research was supported by the Australian Research Council. | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Robertson, David | en |
local.search.author | Rout, James | en |
local.search.author | Sims, Aidan | en |
local.uneassociation | No | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.available | 2015 | en |
local.year.published | 2018 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/afcd1280-d155-479b-acce-61df38c0ac1a | en |
local.subject.for2020 | 490408 Operator algebras and functional analysis | en |
local.subject.seo2020 | 280118 Expanding knowledge in the mathematical sciences | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Size | Format |
---|
SCOPUSTM
Citations
2
checked on Jun 8, 2024
Page view(s)
1,120
checked on Jul 23, 2023
Download(s)
4
checked on Jul 23, 2023
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.