Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/30942
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRahman, Moshiuren
dc.contributor.authorRobson, Andrewen
dc.contributor.authorSalgadoe, Suranthaen
dc.contributor.authorWalsh, Kerryen
dc.contributor.authorBristow, Milaen
dc.date.accessioned2021-07-06T00:36:18Z-
dc.date.available2021-07-06T00:36:18Z-
dc.date.issued2020-04-07-
dc.identifier.citationProceedings, 36(1), p. 1-1en
dc.identifier.issn2504-3900en
dc.identifier.urihttps://hdl.handle.net/1959.11/30942-
dc.description.abstractAccurate pre-harvest yield estimation of high value fruit tree crops provides a range of benefits to industry and growers. Currently, yield estimation in Avocado (<i>Persea americana</i>) and Mango (<i>Mangifera indica</i>) orchards is undertaken by a visual count of a limited number of trees. However, this method is labour intensive and can be highly inaccurate if the sampled trees are not representative of the spatial variability occurring across the orchard. This study evaluated the accuracies of high resolution WorldView (WV) 2 and 3 satellite imagery and targeted field sampling for the pre-harvest prediction of yield. A stratified sampling technique was applied in each block to measure relevant yield parameters from eighteen sample trees representing high, medium and low vigour zones (6 from each) based on classified normalised difference vegetation index (NDVI) maps. For avocado crops, principal component analysis (PCA) and non-linear regression analysis were applied to 18 derived vegetation indices (VIs) to determine the index with the strongest relationship to the measured yield parameters. For mango, an integrated approach of geometric (tree crown area) and optical (spectral vegetation indices) data using artificial neural network (ANN) model produced more accurate predictions. The results demonstrate that accurate maps of yield variability and total orchard yield can be achieved from WV imagery and targeted sampling; whilst accurate maps of fruit size and the incidence of phytophthora can also be achieved in avocado. These outcomes offer improved forecasting than currently adopted practices and therefore offer great benefit to both the avocado and mango industries.en
dc.languageenen
dc.publisherMDPI AGen
dc.relation.ispartofProceedingsen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleExploring the Potential of High Resolution Satellite Imagery for Yield Prediction of Avocado and Mango Cropsen
dc.typeConference Publicationen
dc.relation.conferenceTropAg 2019: 3rd International Tropical Agriculture Conferenceen
dc.identifier.doi10.3390/proceedings2019036154en
dcterms.accessRightsUNE Greenen
local.contributor.firstnameMoshiuren
local.contributor.firstnameAndrewen
local.contributor.firstnameSuranthaen
local.contributor.firstnameKerryen
local.contributor.firstnameMilaen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailmrahma37@une.edu.auen
local.profile.emailarobson7@une.edu.auen
local.profile.emailasalgado@myune.edu.auen
local.output.categoryE3en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.date.conference11th - 13th November, 2019en
local.conference.placeBrisbane, Australiaen
local.publisher.placeSwitzerlanden
local.format.startpage1en
local.format.endpage1en
local.identifier.volume36en
local.identifier.issue1en
local.access.fulltextYesen
local.contributor.lastnameRahmanen
local.contributor.lastnameRobsonen
local.contributor.lastnameSalgadoeen
local.contributor.lastnameWalshen
local.contributor.lastnameBristowen
dc.identifier.staffune-id:mrahma37en
dc.identifier.staffune-id:arobson7en
dc.identifier.staffune-id:asalgadoen
local.profile.orcid0000-0001-6430-0588en
local.profile.orcid0000-0001-5762-8980en
local.profile.orcid0000-0002-9962-9508en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/30942en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleExploring the Potential of High Resolution Satellite Imagery for Yield Prediction of Avocado and Mango Cropsen
local.output.categorydescriptionE3 Extract of Scholarly Conference Publicationen
local.conference.detailsTropAg 2019: 3rd International Tropical Agriculture Conference, Brisbane, Queensland, 11th - 13th November, 2019en
local.search.authorRahman, Moshiuren
local.search.authorRobson, Andrewen
local.search.authorSalgadoe, Suranthaen
local.search.authorWalsh, Kerryen
local.search.authorBristow, Milaen
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/6f6ccd97-d763-48ac-ac36-07c414cccb33en
local.uneassociationYesen
dc.date.presented2019-11-
local.atsiresearchNoen
local.conference.venueBrisbane Convention and Entertainment Centreen
local.sensitive.culturalNoen
local.year.published2020-
local.year.presented2019en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/6f6ccd97-d763-48ac-ac36-07c414cccb33en
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/6f6ccd97-d763-48ac-ac36-07c414cccb33en
local.subject.for2020300206 Agricultural spatial analysis and modellingen
local.subject.for2020300802 Horticultural crop growth and developmenten
local.subject.for2020300207 Agricultural systems analysis and modellingen
local.subject.seo2020260502 Avocadoen
local.subject.seo2020260507 Macadamiasen
local.date.start2019-11-11-
local.date.end2019-11-13-
local.profile.affiliationtypeUnknownen
local.profile.affiliationtypeUnknownen
local.profile.affiliationtypeUnknownen
local.profile.affiliationtypeUnknownen
local.profile.affiliationtypeUnknownen
Appears in Collections:Conference Publication
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
openpublished/ExploringRahmanRobsonSalgadoe2019ConferenceExtract.pdfPublished version140.35 kBAdobe PDF
Download Adobe
View/Open
Show simple item record

Page view(s)

1,372
checked on Mar 8, 2023

Download(s)

14
checked on Mar 8, 2023
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons