Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/30941
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Underwood, J P | en |
dc.contributor.author | Rahman, M M | en |
dc.contributor.author | Robson, A | en |
dc.contributor.author | Walsh, K B | en |
dc.contributor.author | Koirala, A | en |
dc.contributor.author | Wang, Z | en |
dc.date.accessioned | 2021-07-06T00:27:27Z | - |
dc.date.available | 2021-07-06T00:27:27Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Robotic Vision and Action in Agriculture: the future of agri-food systems and its deployment to the real-world, p. 1-6 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/30941 | - |
dc.description.abstract | The fruit load of entire mango orchards was estimated well before harvest using (i) in-field machine vision on mobile platforms and (ii) WorldView-3 satellite imagery. For in-field machine vision, two imaging platforms were utilized, with (a) day time imaging with LiDAR based tree segmentation and multiple views per tree, and (b) night time imaging system using two images per tree. The machine vision approaches involved training of neural networks with image snips from one orchard only, followed by use for all other orchards (varying in location and cultivar). Estimates of fruit load per tree achieved up to a R<sup>2</sup> = 0.88 and a RMSE = 22.5 fruit/tree against harvest fruit count per tree (n = 18 trees per orchard). With satellite imaging, a regression was established between a number of spectral indices and fruit number for a set (n=18) of trees in each orchard (example: R<sup>2</sup> = 0.57, RMSE = 22 fruit/tree), and this model applied across all tree associated pixels per orchard. The weighted average percentage error on packhouse counts (weighted by packhouse fruit numbers) was 6.0, 8.8 and 9.9% for the day imaging system, night imaging machine vision system and the satellite method, respectively, averaged across all orchards assessed. Additionally, fruit sizing was achieved with a RMSE = 5 mm (on fruit length and width). These estimates are useful for harvest resource planning and marketing and set the foundation for automated harvest. | en |
dc.language | en | en |
dc.publisher | Queensland University of Technology | en |
dc.relation.ispartof | Robotic Vision and Action in Agriculture: the future of agri-food systems and its deployment to the real-world | en |
dc.title | Fruit load estimation in mango orchards - a method comparison | en |
dc.type | Conference Publication | en |
dc.relation.conference | ICRA 2018 Workshop on Robotic Vision and Action in Agriculture | en |
dcterms.accessRights | Bronze | en |
local.contributor.firstname | J P | en |
local.contributor.firstname | M M | en |
local.contributor.firstname | A | en |
local.contributor.firstname | K B | en |
local.contributor.firstname | A | en |
local.contributor.firstname | Z | en |
local.profile.school | School of Science and Technology | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | mrahma37@une.edu.au | en |
local.profile.email | arobson7@une.edu.au | en |
local.output.category | E2 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.date.conference | 21st - 25th May, 2018 | en |
local.conference.place | Brisbane, Australia | en |
local.publisher.place | Brisbane, Australia | en |
local.format.startpage | 1 | en |
local.format.endpage | 6 | en |
local.url.open | https://research.qut.edu.au/future-farming/projects/icra-2018-workshop-on-robotic-vision-and-action-in-agriculture/ | en |
local.peerreviewed | Yes | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | Underwood | en |
local.contributor.lastname | Rahman | en |
local.contributor.lastname | Robson | en |
local.contributor.lastname | Walsh | en |
local.contributor.lastname | Koirala | en |
local.contributor.lastname | Wang | en |
dc.identifier.staff | une-id:mrahma37 | en |
dc.identifier.staff | une-id:arobson7 | en |
local.profile.orcid | 0000-0001-6430-0588 | en |
local.profile.orcid | 0000-0001-5762-8980 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/30941 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Fruit load estimation in mango orchards - a method comparison | en |
local.relation.fundingsourcenote | This work was supported by the Australian Centre for Field Robotics (ACFR) at The University of Sydney, a CQ University RUN scholarship to AK (with co-supervision of C. McCarthy of Uni Southern Qld) and CQ Uni fellowship to ZW, and the Precision Agriculture Group at University of New England. Funding support (grants ST15002, ST15005 and ST15006) from Hort. Innovation Australia and the Australian Government Department of Agriculture and Water Resources as part of its Rural R&D Profit program is acknowledged. | en |
local.output.categorydescription | E2 Non-Refereed Scholarly Conference Publication | en |
local.relation.url | https://research.qut.edu.au/future-farming/projects/icra-2018-workshop-on-robotic-vision-and-action-in-agriculture/ | en |
local.conference.details | ICRA 2018 Workshop on Robotic Vision and Action in Agriculture, Brisbane, Australia, 21st - 25th May, 2018 | en |
local.search.author | Underwood, J P | en |
local.search.author | Rahman, M M | en |
local.search.author | Robson, A | en |
local.search.author | Walsh, K B | en |
local.search.author | Koirala, A | en |
local.search.author | Wang, Z | en |
local.uneassociation | Yes | en |
dc.date.presented | 2018-05-25 | - |
local.atsiresearch | No | en |
local.conference.venue | Brisbane Convention and Entertainment Centre | en |
local.sensitive.cultural | No | en |
local.year.published | 2018 | en |
local.year.presented | 2018 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/ada289f9-f3bd-4c68-9b53-d36066918b00 | en |
local.subject.for2020 | 300206 Agricultural spatial analysis and modelling | en |
local.subject.for2020 | 300802 Horticultural crop growth and development | en |
local.subject.for2020 | 300207 Agricultural systems analysis and modelling | en |
local.subject.seo2020 | 260515 Tree nuts (excl. almonds and macadamias) | en |
local.date.start | 2018-05-21 | - |
local.date.end | 2018-05-25 | - |
Appears in Collections: | Conference Publication School of Science and Technology |
Files in This Item:
File | Description | Size | Format |
---|
Page view(s)
1,456
checked on Mar 7, 2023
Download(s)
6
checked on Mar 7, 2023
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.