Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/30064
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGanjiarjenaki, Masouden
dc.contributor.authorSchmalz, Gerden
dc.contributor.authorHarris, Adamen
dc.date.accessioned2021-02-15T02:53:55Z-
dc.date.available2021-02-15T02:53:55Z-
dc.date.created2018-09en
dc.date.issued2019-02-11-
dc.identifier.urihttps://hdl.handle.net/1959.11/30064-
dc.description.abstractWe introduce a CR-invariant class of Lorentzian metrics on a circle bundle over a 3-dimensional CR-structure, which we call FRT-metrics. These metrics generalise the Fefferman metric, allowing for more control of the Ricci curvature, but are more special than the shearfree Lorentzian metrics introduced by Robinson and Trautman. Our main result is a criterion for embeddability of 3-dimensional CR-structures in terms of the Ricci curvature of the FRT-metrics in the spirit of the results by Lewandowski et al. in [37] and also Hill et al. in [25]. We also study higher dimensional versions of shearfree null congruences in conformal Lorentzian manifolds. We show that such structures induce a subconformal structure and a partially integrable almost CR structure on the leaf space and we classify the Lorentzian metrics that induce the same subconformal structure.en
dc.languageenen
dc.publisherUniversity of New Englanden
dc.titleShearfree Lorentzian Geometry and CR Geometryen
dc.typeThesis Doctoralen
dcterms.accessRightsUNE Greenen
local.contributor.firstnameMasouden
local.contributor.firstnameGerden
local.contributor.firstnameAdamen
local.subject.for2008010102 Algebraic and Differential Geometryen
local.subject.for2008010106 Lie Groups, Harmonic and Fourier Analysisen
local.subject.for2008010111 Real and Complex Functions (incl. Several Variables)en
local.subject.seo2008970101 Expanding Knowledge in the Mathematical Sciencesen
local.hos.emailst-sabl@une.edu.auen
local.thesis.passedPasseden
local.thesis.degreelevelDoctoralen
local.thesis.degreenameDoctor of Philosophy - PhDen
local.contributor.grantorUniversity of New Englanden
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailmganjia2@une.edu.auen
local.profile.emailschmalz@une.edu.auen
local.profile.emailaharris5@une.edu.auen
local.output.categoryT2en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.access.fulltextYesen
local.contributor.lastnameGanjiarjenakien
local.contributor.lastnameSchmalzen
local.contributor.lastnameHarrisen
dc.identifier.staffune-id:mganjia2en
dc.identifier.staffune-id:schmalzen
dc.identifier.staffune-id:aharris5en
dc.identifier.studentune-id:mganjia2en
local.profile.orcid0000-0002-6141-9329en
local.profile.orcid0000-0002-1259-1122en
local.profile.roleauthoren
local.profile.rolesupervisoren
local.profile.rolesupervisoren
local.identifier.unepublicationidune:1959.11/30064en
dc.identifier.academiclevelStudenten
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.thesis.bypublicationYesen
local.title.maintitleShearfree Lorentzian Geometry and CR Geometryen
local.output.categorydescriptionT2 Thesis - Doctorate by Researchen
local.school.graduationSchool of Science & Technologyen
local.search.authorGanjiarjenaki, Masouden
local.search.supervisorSchmalz, Gerden
local.search.supervisorHarris, Adamen
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/c5adc24a-3a88-4542-bce7-7b039eb1ea41en
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.conferred2019en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/c5adc24a-3a88-4542-bce7-7b039eb1ea41en
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/c5adc24a-3a88-4542-bce7-7b039eb1ea41en
local.subject.for2020490402 Algebraic and differential geometryen
local.subject.for2020490406 Lie groups, harmonic and Fourier analysisen
local.subject.for2020490411 Real and complex functions (incl. several variables)en
local.subject.seo2020280118 Expanding knowledge in the mathematical sciencesen
Appears in Collections:School of Science and Technology
Thesis Doctoral
Files in This Item:
5 files
File Description SizeFormat 
openpublished/GanjiarjenakiMasoudPhD2019Thesis.pdfThesis588.5 kBAdobe PDF
Download Adobe
View/Open
Show simple item record

Page view(s)

2,078
checked on May 19, 2024

Download(s)

292
checked on May 19, 2024
Google Media

Google ScholarTM

Check


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.