
Shearfree Lorentzian geometry and CR
geometry

By

Masoud Ganji-Arjenaki

A thesis submitted for the degree of

Doctor of Philosophy

of The University of New England

September 2018



Declaration

I certify that the substance of the thesis has not already been submitted for

and degree and is not currently being submitted for any other degree.

I certify that to the best of my knowledge, any help received in preparing

this thesis, and all sources used, have been acknowledged in this thesis.

Masoud Ganji-Arjenaki

ii



Abstract

We introduce a CR-invariant class of Lorentzian metrics on a circle bundle

over a 3-dimensional CR-structure, which we call FRT-metrics. These met-

rics generalise the Fefferman metric, allowing for more control of the Ricci

curvature, but are more special than the shearfree Lorentzian metrics in-

troduced by Robinson and Trautman. Our main result is a criterion for

embeddability of 3-dimensional CR-structures in terms of the Ricci curva-

ture of the FRT-metrics in the spirit of the results by Lewandowski et al. in

[37] and also Hill et al. in [25]. We also study higher dimensional versions of

shearfree null congruences in conformal Lorentzian manifolds. We show that

such structures induce a subconformal structure and a partially integrable

almost CR structure on the leaf space and we classify the Lorentzian metrics

that induce the same subconformal structure.
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Introduction

This thesis concerns the relation between geometric properties of Lorentzian

spaces and CR manifolds of hypersurface type. The most famous example of

Lorentzian manifold is the 4-dimensional spacetime from Einstein’s relativity

theory. We are interested in the curved version of that, specifically, in the

properties of its geometric curvature and the existence of certain solutions of

Maxwell’s equations.

On the other hand, a CR manifold (M,D,J) is a manifoldM of dimension

2n+ 1 with a rank 2n contact distribution D, and complex structure J on D

that satisfies certain integrability conditions. Such CR manifolds naturally

occur as boundaries of domains in complex manifolds.

One of the most crucial problems is the embeddability problem which asks

if an abstractly given CR manifold (M,D,J) is locally realisable as a real

hypersurface in Cn+1. It is well-known that 3-dimensional CR manifolds are

“almost never embeddable”, unless they are real analytic or possess certain

symmetry.

It is a notoriously hard problem to give criteria, when a CR manifold

is locally embeddable. In the 1960’s, physicists discovered an intimate rela-

tionship between the embeddability problem of a 3-dimensional CR manifold

and geometric properties of an associated 4-dimensional spacetime.

Subsequently, Hill et al. [25] proved the following criterion of embed-

dabiltiy

Theorem [25] Let M be a sufficiently smooth strictly pseudoconvex 3-

dimensional CR manifold. It is locally CR embeddable as a hypersurface

3
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in C2 if and only if:

1. it admits a lift to a spacetime whose complexified Ricci tensor vanishes

on the corresponding distribution of α-planes, and

2. it admits a non-trivial null Maxwell field aligned with the null con-

gruence of shearfree geodesics corresponding to the CR structure on

M.

The principal aim of this thesis is to clarify the nature of the above result,

we succeeded in proving an embeddability criterion that uses a more special

class of metrics, but does not require the a priori assumption of the existence

of an aligned Maxwell field. Our result has been published in [61].

We have introduced the family of FRT metrics (in honour of Fefferman,

Robinson and Trautman) specifically for our criterion. The family of FRT

metrics is more general than the celebrated conformal Fefferman metric from

CR geometry but more special than the family of shearfree metrics introduced

by I. Robinson and A. Trautman [52, 53].

Another principal achievement of the thesis are the theorems 4.2.3 and

4.2.4, which clarify the relation between CR manifolds, subconformal mani-

folds and Lorentzian manifolds in higher dimensions. The results have been

published in [3].

This thesis aims to survey the pioneering works on the relation between

shearfree Lorentzian geometry and CR geometry. For the sake of a self-

contained exposition we give an introduction to pseudo Riemannian geome-

try, affine connections, Cartan’s structural equations, Hodge dual operator,

Maxwell’s equations, Beltrami equation.

We cite results and proofs from original papers whenever it is essential

for the understanding of the presented material, in several instances we have

added proofs of known results which did not seem to be readily available in

the literature.
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The thesis is organised as follows. In the preliminary chapter we col-

lect some well-known fundamental facts about pseudo Riemannian geome-

try, which will be used throughout the thesis. In particular, we invoke the

Nomizu operator, which simplifies some of the proofs on Lorentzian metrics

with shearfree vector fields.

In addition, we explain the notation of electromagnetic fields as wedge

products of elements of admissible coframe defined on the Lorentzian mani-

fold.

Chapter 1 starts with defining contact manifolds. We then characterise

the Reeb vector fields on contact manifolds as infinitesimal automorphisms

of the contact distribution (Proposition 1.1.2).

Next we introduce Cartan’s approach to CR structures, which enables us

to define the shearfree metrics and FRT metrics in the proceeding chapters.

In Chapter 2, the embedding problem for 3-dimensional CR manifolds is

discussed. In 1982, M. Kuranishi [32] proved that smooth CR manifolds of

dimension 2n + 1, with n ≥ 4, are embeddable. After that, T. Akahori [1]

showed that it is also true for n = 3.

However, CR manifolds of dimension 3, that is when n = 1, are rarely

embeddable. L. Nirenberg gave the first counterexample in [44, 45]. See

Chapter 2 of the present work and [5] for more details.

Based on Theorem 2.1.6 by H. Jacobowitz, we give criteria for the em-

beddability of 3-dimensional CR manifolds. We also compute the Feffer-

man metric explicitly for general 3-dimensional CR manifolds following the

approach [29, 47], but without assuming that a non-constant CR function

exists.

Chapter 3 is the main part of the thesis. The main result of this chapter is

a criterion for local embeddability of 3-dimensional CR manifolds mentioned

above.

In particular, we define the family of FRT metrics on a circle bundle and

show that it is CR invariant.
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In Chapter 4, we study higher dimensional versions of shearfree null con-

gruences in conformal Lorentzian manifolds. We define the RT-spaces and

show that such generalisations of shearfree null congruences induce a sub-

conformal structure and a partially integrable almost CR structure on the

leaf space.



Chapter 0

Preliminaries on

pseudo-Riemannian geometry

The goal of this chapter is to provide an introduction to pseudo-Riemannian

geometry and some facts in manifold theory which will be needed later and

to fix our terminology. The topics discussed include Lorentzian geometry,

structural equations, Nomizu operator and electromagnetic fields. In the

first section we recall some fundamental theorems and definitions in pseudo-

Riemannian geometry( Lorentzian geometry), which will be used throughout

the thesis [24, 49, 50, 35, 19].

0.1 Pseudo-Riemannian geometry

In this section we collect some preliminaries about pseudo-Riemannian ge-

ometry, which are used throughout the thesis.

0.1.1 Pseudo-Riemannian metric

A pseudo-Riemannian metric is defined by (0,2) tensors on the tangent

spaces. Hence, to define the pseudo-Riemannian metric in general, let V

be a real vector space of finite dimension n. A symmetric bilinear form b on

7
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V is an R−bilinear mapping b ∶ V × V → R such that b(v,w) = b(w, v) for all

v,w ∈ V .

Definition 0.1.1 A symmetric bilinear form b on V is

1. positive (negative) definite, provided v ≠ 0 implies b(v, v) > 0(< 0),

2. nondegenerate, provided g(v,w) = 0 for all w ∈ V implies v = 0.

A vector u ∈ V is called a unit vector, if g(u,u) = ±1. Two vectors u, v

are orthogonal if g(u, v) = 0. A set of n mutually orthogonal unit vectors is

defined to be an orthonormal basis of V . Similar to the inner product space,

i.e. the vector space equipped with a positive definite symmetric bilinear

form, the scalar product space, that is, the vector space furnished with a

symmetric nondegenerate bilinear form, possesses an orthonormal basis.

Definition 0.1.2 The index ν of a symmetric bilinear form b on V is the

largest integer that is the dimension of a vector subspace W ⊆ V where b∣W×W ∶
W ×W → R is negative definite.

We now have the following lemma

Lemma 0.1.3 [49] Let (V, g) be a scalar product. For any orthonormal basis

(e1, . . . , en) for V , the number of negative signs in the signature (ε1, . . . , εn)
is the index ν of V where εi = g(ei, ei).

Proof Suppose for the first m vectors e1, . . . , em we have that εi < 0, i =
1, . . .m. The inner product g is negative definite on the subspace S where

S = linear span{e1, . . . , em}.

Therefore, ν ≥m. Let W be a maximal subspace of V on which g is negative

definite with dim =m. The linear map L ∶W → S defined by

L(w) = ∑
j≤m

g(w, ej)ej, w ∈W
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is one-to-one, since on one hand, g(w,w) ≤ 0 for w ∈ W . On the other

hand, suppose w ∈ kerL. For the indices j ≤ m it implies that g(w, ej) = 0.

Moreover, since L(w) = 0 it implies that

g(w,w) = ∑
j≤m

wjg(w, ej) + ∑
j>m

wjg(w, ej) = ∑
j>m

wjg(w, ej) = ∑
j>m

g(w, ej)2 = 0,

which implies w = 0, where w =
n

∑
j=1
wjej. We note that wj = g(w, ej) for

j >m.

Now we are in the position to define the pseudo-Riemannian metric.

Definition 0.1.4 A pseudo-Riemannian metric g on a smooth manifold M
is an assignment which smoothly assigns to each point p ∈ M a symmetric

nondegenerate bilinear form gp on the tangent space TpM, such that the index

of gp is the same for all p ∈ M.

The pair (M, g) is called a pseudo-Riemannian manifold. The pair (M, g)
is called Riemannian manifold, if the index ν = 0. If ν = 1, the pair (M, g)
is a Lorentzian manifold.

0.1.2 Affine connection

We also recall the definition of affine connection for any manifold M. The

set of all smooth sections of the tangent bundle is denoted by Γ(TM).

Definition 0.1.5 An affine connection on a manifold M is a rule which

assigns to each X ∈ Γ(TM) a mapping

∇X ∶ Γ(TM)→ Γ(TM)

satisfying the following two properties:

(i) ∇fX+gY = f∇X + g∇Y ,

(ii) ∇X(fY ) = f(∇XY ) + (Xf)Y ,
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for f, g ∈ C∞(M) and X,Y ∈ Γ(TM). The operator ∇X is called covariant

derivative with respect to X.

Before we go any further, we state the fundamental theorem in pseudo-

Riemannian geometry, which plays an important role in other parts of the

thesis.

Theorem 0.1.6 [49] On a pseudo-Riemannian manifoldM there is a unique

connection ∇ such that

[V,W ] = ∇VW −∇WV,(0.1a)

Xg(V,W ) = g(∇XV,W ) + g(V,∇XW ),(0.1b)

for all X,V,W ∈ Γ(TM). The connection ∇ is called the Levi-Civita connec-

tion of M.

The so-called Koszul formula below is a direct consequence of (0.1a) and

(0.1b) of the above theorem.

2g(∇VW,X) = V g(W,X) +Wg(X,V ) −Xg(V,W ) − g(V, [W,X])(0.2)

+ g(W, [X,V ]) + g(X, [V,W ]).

We set

T (X,Y ) = ∇XY −∇YX − [X,Y ]

R(X,Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ]

for all X,Y ∈ Γ(TM). The tensor fields T and R are called torsion and

curvature tensor fields respectively. Let p ∈ M and suppose (e1, . . . , en) is a

basis for the vector fields in a neighborhood of p. We define the functions

Γkij, T
k
ij,R

k
lij by the formulas

∇eiej = ∑
k

Γkijek,

T (ei, ej) = ∑
k

T kijek,

R(ei, ej)el = ∑
k

Rk
lijek.
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We note from (0.1a) that the Levi-Civita connection is torsion-free, that is,

the torsion tensor vanishes or equivalently

T ijk = 0, i, j, k = 1, . . . , n

is satisfied.

Suppose θi form a dual frame to ei, i.e., θi(ej) = δij. Then Γij are deter-

mined by

(0.3) Γij = Γikjθ
k, i, j, k = 1, . . . , n,

and therefore, Γijk = Γik(ej). The 1-forms Γij are called connection forms. The

structural equations which will be explained below show the relation between

the 1-forms Γij and the tensor fields T and R.

0.2 The structural equations

The structural equations of Cartan play an important role in the computation

of the components of the Ricci curvature in the next chapters.

Let M be an n-dimensional manifold with an affine connection ∇.

Theorem 0.2.1 (Cartan) [24] For the 1-forms θi,Γij and tensor fields T,R

the following statements are fulfilled:

dθi = −Γip ∧ θp +
1

2
T ijkθ

j ∧ θk,(0.4a)

dΓij = −Γip ∧ Γpj +
1

2
Ri
jk`θ

k ∧ θ`.(0.4b)

The next fact relates the metric defined on the manifold to the connection

forms.

Proposition 0.2.2 Let (M, g) be a pseudo-Riemannian manifold of dimen-

sion n and (e1, . . . , en) be a local frame for the vector fields on M. Then,

(0.5) dgij = gikΓkj + gjkΓki

is satisfied, where gij = g(ei, ej) and Γij as was introduced by (0.3).
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We provide a proof, analogous to the proof for Riemannian manifolds in [19].

Proof Let Y ∈ Γ(TM) be any arbitrary vector field. We first note that

dgij(Y ) = Y (g(ei, ej)).

On the other hand,

(gikΓkj + gjkΓki )(Y ) =g (Γkj (Y )ek, ei) + g (Γki (Y )ek, ej)

= g (y1Γkj (e1)ek + ⋅ ⋅ ⋅ + ynΓkj (en)ek, ei)

+ g (y1Γki (e1)ek + ⋅ ⋅ ⋅ + ynΓki (en)ek, ej)

= g (y1Γk1jek + ⋅ ⋅ ⋅ + ynΓknjek, ei)

+ g (y1Γk1iek + ⋅ ⋅ ⋅ + ynΓkniek, ej)

= g (y1∇e1ej + ⋅ ⋅ ⋅ + yn∇enej, ei)

+ g (y1∇e1ei + ⋅ ⋅ ⋅ + yn∇enei, ej)

= g (∇Y ej, ei) + g (∇Y ei, ej) = Y (g(ei, ej))

= dgij(Y ).

We use the metric to lower and raise the indices. For example for the con-

nection forms Γij, we have gikΓkj = Γij.

0.2.1 Frobenius Theorem

The Frobenius theorem plays a crucial role in the next chapters. For a

detailed proof of this famous theorem, refer to, e.g. [18, 7].

Theorem 0.2.3 (Frobenius) Let θ1, . . . , θr be 1-forms in Rn, which are

linearly independent at a point p ∈ Rn. Suppose there are 1-forms ωij satisfying

dθi =
r

∑
j=1

ωij ∧ θj, i = 1, . . . , r.

Then, there are functions f ij , x
j, j = 1, . . . , r satisfying

θi =
r

∑
j=1

f ijdx
j.
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We finalise this section by recalling the following lemma, and for the conve-

nience of the readers, the proof is provided.

Lemma 0.2.4 [35] Let M be a smooth manifold of dimension n. Take

(e1, . . . en) to be a local frame for M with corresponding dual coframe (θ1, . . . , θn),

and, furthermore,

[ei, ej] = clij el, l = 1,⋯, n.

Then, the exterior derivative of each of the 1-forms θi is given by

dθk = −ckij θi ∧ θj, i < j.

Proof For the proof we note that dθk is a 2-form and can be expressed as

dθk = bkij θi ∧ θj, k = 1,⋯, n, i < j,

and therefore,

dθk(ei, ej) = bkij θi ∧ θj(ei, ej) =
1

2
bkij.

On the other hand,

dθk(ei, ej) =
1

2
{eiθk(ej) − ejθk(ei) − θk([ei, ej])} = −

1

2
θk([ei, ej])

= −1

2
clij θ

k(el) = −
1

2
ckij.

So, bkij = −ckij.

0.3 Nomizu operator

The Nomizu operator is an important tool which relates the differential ge-

ometry to algebra and is defined as follows.

Definition 0.3.1 Let (M, g) be a Lorentzian manifold with the Levi-Civita

connection ∇. For any smooth vector field X ∈ Γ(TM), the Nomizu operator

LX is defined as

LX ∶ Γ(TM)→ Γ(TM)

LXY ∶ = −∇YX, ∀Y ∈ Γ(TM).
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The g-adjoint L∗X is the operator defined by

g(L∗XV,W ) = g(V,LXW ) ∀X,V,W ∈ Γ(TM).

The symmetric and skew-symmetric parts of the Nomizu operator are de-

noted by LsX and LaX respectively. That is,

LsX ∶= 1

2
(LX +L∗X), LaX ∶= 1

2
(LX −L∗X).

The Nomizu operator has some known facts listed in the following proposition

Proposition 0.3.2 The following statements hold

1. For any null vector field p, L∗pp = 0.

2. For arbitrary vector fields X,Y,V

(0.6) (LV g)(X,Y ) = −2g(X,LsV Y ),

where LVX is the Lie derivative of X along V .

3. For any vector field X and the 1-form θ = g(X, ⋅)

dθ(Y,V ) = −g(LaXY,V ), Y, V ∈ Γ(TM).

Proof To see that L∗pp = 0, where g(p, p) = 0, we notice that for the adjoint

operator g(L∗pp,X) = g(p,LpX) is satisfied. Therefore,

g(L∗pp,X) = g(p,LpX) = g(p,−∇Xp) = −
1

2
Xg(p, p) = 0

for all vector fields X, where the last equality follows from (0.1b). Since g

is non-degenerate, it follows that L∗pp = 0. To prove the second property, for

arbitrary vector fields X,Y,V

(LV g)(X,Y ) = LV (g(X,Y )) − g(LVX,Y ) − g(X,LV Y )

= V g(X,Y ) − g(∇VX −∇XV,Y ) − g(X,∇V Y −∇Y V )

= V g(X,Y ) − g(∇VX,Y ) + g(∇XV,Y ) − g(X,∇V Y ) + g(X,∇Y V )

= g(−LVX,Y ) + g(X,−LV Y ) = −g(X,L∗V Y +LV Y ) = −2g(X,LsV Y ).
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is satisfied. In order to show the last statement, we notice that for arbitrary

vector fields Y,V it follows that

dθ(Y,V ) = 1

2
{Y g(X,V ) − V g(X,Y ) − g(X, [Y,V ])}

= 1

2
{Y g(X,V ) − V g(X,Y ) − g(X,∇Y V ) + g(X,∇V Y )}

= 1

2
{g(∇YX,V ) + g(X,∇Y V ) − g(∇VX,Y )

− g(X,∇V Y )) − g(X,∇Y V ) + g(X,∇V Y )}

= 1

2
{g(∇YX,V ) − g(∇VX,Y )} = 1

2
{−g(LXY,V ) + g(LXV,Y )}

= 1

2
{−g(LXY,V ) + g(L∗XY,V )}

= −1

2
{g(LXY −L∗XY,V )} = −g(LaXY,V ).

0.4 Maxwell’s equations

The solutions of Maxwell’s equations which describe electromagnetic fields

can be conveniently represented by means of differential 2-forms. In order to

recall the Maxwell’s equations, we first need to review some facts about the

Hodge operator. The solutions of Maxwell’s equations are needed in chapeter

3.

0.4.1 Hodge dual operator

Let M be an oriented n-dimensional manifold equipped with a metric g,

(Riemannian or pseudo-Riemannian), and Λp(T ∗M) the set of all smooth

differential p-forms on M. We recall that, by Riesz representation theorem,

we can use the metric tensor to relate the vector fields and 1-forms.

For any 1-form η there exists a unique vector field V on M such that

η = g(V, ⋅), which means η(X) = g(V,X) for all vector fields X on M.

The metric g defined on the tangent bundle of M induces a metric ĝ on

the cotangent bundle of M as follows:

ĝ(η, ζ) = g(V,W )
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where η = g(V, ⋅) and ζ = g(W, ⋅). Similarly, the metric g induces a metric on

Λ2(T ∗M). In order to describe the induced metric Λ2(T ∗M), we recall the

universal mapping property as follows.

Universal Mapping Property [50] Let V,W be two vector spaces. Given

any skew-symmetric multilinear mapping

A ∶
p-times

³¹¹ ¹¹ ¹¹ ¹¹ ¹ ¹¹ ¹¹·¹¹ ¹¹ ¹¹ ¹¹ ¹ ¹¹ ¹¹µ
V ×⋯ × V →W

there exists a unique linear mapping

` ∶ Λp(V ) →W

such that

`(v1 ∧ ⋅ ⋅ ⋅ ∧ vp) = A(v1, . . . , vp), v1, . . . vn ∈ V.

Now we consider the following real-valued function

A ∶
4-times

³ ¹¹ ¹¹ ¹¹ ¹¹ ¹¹ ¹ ¹¹ ¹¹ ¹¹ ¹¹ ¹¹ ¹¹ ¹ ¹¹ ¹¹ ¹¹ ¹¹ ¹¹ ¹¹ ¹ ¹¹ ¹¹ ¹¹ ¹¹ ¹¹ ¹¹·¹ ¹¹ ¹¹ ¹¹ ¹¹ ¹¹ ¹¹ ¹ ¹¹ ¹¹ ¹¹ ¹¹ ¹¹ ¹¹ ¹ ¹¹ ¹¹ ¹¹ ¹¹ ¹¹ ¹¹ ¹ ¹¹ ¹¹ ¹¹ ¹¹ ¹¹µ
Λ(T ∗M)×⋯×Λ(T ∗M)→ R

defined by

A(α1, α2, α3, α4) =
RRRRRRRRRRRR

ĝ(α1, α3) ĝ(α1, α4)
ĝ(α2, α3) ĝ(α2, α4)

RRRRRRRRRRRR
,

where αi, i = 1, . . .4, is a 1-form on M. The mapping A is biskew-symmetric

and mulitlinear and two applications of the universal mapping property yields

a bilinear form, still denoted by g, on Λ2(T ∗M) characterized by

g(α1 ∧ α2, β1 ∧ β2) =
RRRRRRRRRRRR

ĝ(α1, β1) ĝ(α1, β2)
ĝ(α2, β1) ĝ(α2, β2)

RRRRRRRRRRRR
.

The bilinear form g is nondegenerate, because for all 1-forms X,Y ,

g(α1 ∧ α2,X ∧ Y ) =
RRRRRRRRRRRR

ĝ(α1,X) ĝ(α1, Y )
ĝ(α2,X) ĝ(α2, Y )

RRRRRRRRRRRR
= 0
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implies that the first row of the determinant is a b multiple of the second

row. Precisely,

ĝ(α1,X) = bĝ(α2,X), ĝ(α1, Y ) = bĝ(α2, Y ),

which implies α1 = bα2 since ĝ is nondegenerate. That means α1 ∧ α2 = 0.

Definition 0.4.1 Let (M, g) be a 4-dimensional Lorentzian manifold. The

Hodge dual operator is a linear operator

∗ ∶ Λ2(T ∗M)→ Λ2(T ∗M)

which assigns to any 2-form η ∈ Λp(T ∗M), a 2-form ∗η ∈ Λ2(T ∗M) defined

by

ζ ∧ ∗η = −g(ζ, η)vol, ∀ζ ∈ Λ2(T ∗M).

Here vol is the volume form on the manifold M [18].

Let (e1, e2, e3, e4) be an orthonormal frame for the set of vector fields on

M such that g(e1, e1) = −1 and g(ei, ei) = 1 for i = 2,3,4. The set of 2-forms

e1 ∧ e2, e1 ∧ e3, e1 ∧ e4, e3 ∧ e4, e4 ∧ e2, e2 ∧ e3

is a frame for Λ2(T ∗M). The following relations are also satisfied

∗ (e1 ∧ e2) = e3 ∧ e4, ∗(e3 ∧ e4) = −e1 ∧ e2,

∗ (e1 ∧ e3) = e4 ∧ e2, ∗(e4 ∧ e2) = −e1 ∧ e3,

∗ (e1 ∧ e4) = e2 ∧ e3, ∗(e2 ∧ e3) = −e1 ∧ e4.

The Hodge operator has the property ∗2 = − id. The ∗ operator is also self-

adjoint, that is,

g(∗ζ, η) = g(ζ,∗η)

for all 2-forms ζ, η ∈ Λ2(T ∗M). Indeed,

g(∗ζ, η)vol = − ∗ ζ ∧ ∗η = − ∗ η ∧ ∗ζ = g(∗η, ζ)vol .
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0.4.2 Electromagnetic Fields

Let (M, g) be an oriented 4-dimensional Lorentzian manifold.

Definition 0.4.2 An electromagnetic field is a real 2-form F such that

dF = d ∗F = 0,

where ∗ is the Hodge operator associated with the metric g.

Now consider the complex 2-form F = F + i ∗F . It follows that dF = 0. We

call F , the complex electromagnetic field. The complex electromagnetic field

F , has the property of being anti-self-dual, that is, ∗F = −iF [42].

Definition 0.4.3 A differential 2-form on the Lorentzian manifold (M, g)
is called null, if

g(F,F ) = g(F,∗F ) = 0.

In particular, null solutions of the Maxwell’s equations are called null elec-

tromagnetic fields.

We extend the metric g defined on Λ2(T ∗M) by complex linearity to a metric

on Λ2(T ∗M)⊗C, the complexification of Λ2(T ∗M), which we also denote

by g as follows

g(F1 + iF2,E1 + iE2) = g(F1,E1) − g(F2,E2) + i{g(F1,E2) + g(F2,E1)}.

We now say the complex electromagnetic field F is null if, g(F ,F) = 0.

Proposition 0.4.4 The nonzero complex electromagnetic field F is null if

and only if

F ∧F = 0.

Proof Assume F = F + i ∗F is null, i.e. g(F ,F) = 0. It follows that

g(F,F ) = g(∗F,∗F ), and g(F,∗F ) = 0.
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It also follows that

F ∧ F = −F ∧ ∗∗F = g(F,∗F )vol = 0,

and furthermore,

∗F ∧ ∗F = −g(∗F,F )vol = 0.

Moreover, on one hand,

F ∧ ∗F = ∗F ∧ F

is satisfied. On the other hand,

F ∧ ∗F = −g(F,F )vol = −g(∗F,∗F )vol = ∗F ∧ ∗∗F = − ∗ F ∧ F.

Hence,

F ∧ ∗F = ∗F ∧ F = 0.

Thus, we now clearly observe that

F ∧F = F ∧ F − ∗F ∧ ∗F + iF ∧ ∗F + i ∗ F ∧ F = 0.

To show the converse statement we note that from F ∧ F = 0, it follows

that

F ∧ F = ∗F ∧ ∗F, and F ∧ ∗F = − ∗ F ∧ F.

Hence,

g(F,F )vol = −F ∧ ∗F = ∗F ∧ F = − ∗ F ∧ ∗∗F = g(∗F,∗F )vol

implies g(F,F ) = g(∗F,∗F ). Furthermore,

g(F,∗F )vol = −F ∧ ∗∗F = F ∧ F = ∗F ∧ ∗F = −g(∗F,F )vol

also implies g(∗F,F ) = 0 and consequently, g(F ,F) = 0.

We next show that a null complex electromagnetic field F can always be

written as F = ϕλ ∧ µ, where ϕ is a complex function, λ is a smooth real

1-form and µ is a smooth complex 1-form. Before proving that, we need to

state the following definition.
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Definition 0.4.5 Let (M, g) be a Lorentzian manifold of dimension m and

p⊥ = {V ∈ Γ(TM) ∣ g(p, V ) = 0}

be the codimension one distribution that is orthogonal to the null vector field

p. A field of frames (p, e1, . . . , em, q) is called admissible if

p⊥ = span(p, e1, . . . , em), g(p, q) = 1,

and

g(p, ei) = g(q, ei) = 0, g(ei, ej) = δij, for i, j = 1. . . .m.

We denote by

p∗ = g(q, ⋅), e∗1 = g(e1, ⋅), . . . , e∗m = g(em, ⋅), q∗ = g(p, ⋅)

the dual coframe to p, e1, . . . , em, q.

We also recall that a 2-form ω is decomposable if

ω = α ∧ β,

where α,β are 1-forms.

Lemma 0.4.6 LetM be a 4-dimensional Lorentzian manifold. Any nonzero

2-form ω is decomposable if and only if

ω ∧ ω = 0.

Proof Assume that a 2-form ω is decomposable, that is there are 1-forms

α,β such that ω = α ∧ β. It is now obvious that

ω ∧ ω = α ∧ β ∧ α ∧ β = 0.

The proof in the other direction is by contradiction. Assume ω is not de-

composable. Therefore, there are linearly independent 1-forms α,β, γ, η such

that

ω = α ∧ β + γ ∧ η,

which implies

ω ∧ ω = 2α ∧ β ∧ γ ∧ η ≠ 0.
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Lemma 0.4.7 Let (M, g) be a 4-dimensional Lorentzian manifold. For the

null electromagnetic field F there exists a local admissible frame (p, e, f, q)
such that F = q∗ ∧ e∗ and ∗F = q∗ ∧ f∗.

Proof Since F is null, it follows that F ∧ F = 0. Hence, by Lemma 0.4.6, F

is decomposable, that is, there are two real 1-forms α, β such that F = α∧β.

Moreover, if follows from

g(F,F ) =
RRRRRRRRRRRR

ĝ(α,α) ĝ(α,β)
ĝ(β,α) ĝ(β, β)

RRRRRRRRRRRR
= 0

that there exists a function t such that

ĝ(α,α) + tĝ(α,β) = ĝ(α,α + tβ) = 0,

ĝ(β,α) + tĝ(β, β) = ĝ(β,α + tβ) = 0.

Set q∗ ∶= α + tβ. From the construction

ĝ(q∗, q∗) = ĝ(q∗, α) = ĝ(q∗, β) = 0

are satisfied. Then, there exists a null vector field p∗ such that

ĝ(p∗, q∗) = 1,

since ĝ is nondegenerate. One can complement p∗, q∗ by orthonormal vectors

e∗, f∗ such that

(p∗, q∗, e∗, f∗)

forms a null coframe for the cotangent bundle, more precisely,

ĝ(p∗, e∗) = ĝ(p∗, f∗) = ĝ(q∗, e∗) = ĝ(q∗, f∗) = 0.

It now follows that

F = α ∧ β = (q∗ − tβ) ∧ β = q∗ ∧ β.

Furthermore, β is expressed as

β = xq∗ + ye∗ + zf∗,
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where x, y, z are some real functions, since F is null. Therefore,

F = q∗ ∧ β = q∗ ∧ (ye∗ + zf∗).

If

ĝ(ye∗ + zf∗, ye∗ + zf∗) = y2 + z2 ≠ 1,

the coframe

(p∗∗, q∗∗, e∗∗, f∗∗) = (X1,X2,X3,X),

where

p∗∗ = 1√
y2 + z2

p∗, q∗∗ =
√
y2 + z2 q∗,

e∗∗ = y√
y2 + z2

e∗ + z√
y2 + z2

f∗, f∗∗ = z√
y2 + z2

e∗ − y√
y2 + z2

f∗

has the property that

F = q∗∗ ∧ e∗∗,

On the other hand, the 2-form ∗F can be written as

∗F = cijX i ∧Xj, i < j.

The only nonzero coefficient is c24 = 1, since

p∗∗ ∧ e∗∗ ∧ ∗F = −g(p∗∗ ∧ e∗∗, q∗∗ ∧ e∗∗)vol = −c24 vol,

and, moreover,

g(p∗∗ ∧ e∗∗, q∗∗ ∧ e∗∗) = 1.

Thus,

∗F = q∗∗ ∧ f∗∗,

and the vectors (q, e, f, p) given by

p∗∗ = g(q, ⋅), q∗∗ = g(p, ⋅), e∗∗ = g(e, ⋅), f∗∗ = g(f, ⋅)

form an admissible frame for the tangent bundle.
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As a consequence of the above lemma, we have the following proposition for

the null complex electromagnetic field F .

Proposition 0.4.8 Any null complex electromagnetic field F can be written

as

F = aλ ∧ µ,

where a is a complex function, λ a real 1-form and µ a complex 1-form.

Proof Using Lemma 0.4.7, there exists an admissible frame

(p∗, q∗, e∗, f∗)

such that the null complex electromagnetic field can be expressed as

F = F + i ∗F = q∗ ∧ ω,

where ω = e∗ + if∗. It also follows that

q∗ ∧ F = 0.

Moreover, there exists two complex 1-forms γ,µ such that F = γ ∧µ, since F
is null. Therefore,

q∗ ∧ γ ∧ µ = 0,

implies that there are two complex functions a, b such that

γ = aq∗ + bµ.

Wedging both sides of the above expression by µ, we get

F = γ ∧ µ = aq∗ ∧ µ,

where λ = q∗ = g(p, ⋅) and p is a null vector field.

Corollary 0.4.9 It follows from the identity

LpF = d(p ⌟ F) + p ⌟ dF = d(p ⌟ F)

that LpF = 0. Indeed,

p ⌟ F = ag(p, p)ω − ag(p, ⋅) ∧ [(y + z)p ⌟ e∗ + (z − y)p ⌟ f∗] = 0.
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The null complex electromagnetic field also possesses two properties stated

below, which will be used later.

Proposition 0.4.10 For the null complex electromagnetic field described in

Proposition (0.4.8), the following statements are satisfied:

λ ∧ µ ∧Lpµ = 0,(0.7a)

λ ∧Lpλ = 0,(0.7b)

where λ = g(p, ⋅).

Proof Taking the Lie derivative along the null vector field p from both sides

of the electromagnetic field F = aλ ∧ µ, we see

(0.8) LpF = p(a)λ ∧ µ + aLpλ ∧ µ + aλ ∧Lpµ = 0,

which implies λ ∧ µ ∧Lpµ = 0. Wedging both sides of (0.8) by λ gives us

λ ∧Lpλ ∧ µ = 0,

which is equivalent to

Lpλ = xλ + yµ,

where x, y are two complex functions.

Wedging the last identity with λ, implies that

λ ∧Lpλ = tF ,

where t = y
a . If t ≠ 0, and since the left hand side is real, it follows that

ȳλ ∧ µ̄ = yλ ∧ µ,

which means that λ is a linear combination of µ and µ̄ contradicting the

definition of the electromagnetic field.



0.4. MAXWELL’S EQUATIONS 25

0.4.3 Isothermal coordinates

In this subsection we briefly recall the notion of isothermal coordinates, which

will be used later. Let

g = E(x, y)dx2 + 2F (x, y)dxdy +G(x, y)dy2

satisfying

EG − F 2 > 0, E > 0

be a positive definite Riemannian metric defined in a neighborhood of a

surface with the local coordinates x, y. By isothermal coordinates we mean

local coordinates u, v relative to which the metric takes the form

g = λ(u, v)(du2 + dv2), λ(u, v) > 0.

A special case first observed and studied by Gauss, is a surface in three

dimensions, (coordinates x, y, φ ) given by φ = φ(x, y). He also proved the

existence of real analytic isothermal coordinates when the Riemannian metric

defined on a neighborhood of 0 ∈ R2 is real analytic. One can refer to, e.g. [62]

for a proof. The weakest conditions under which the isothermal coordinates

are known were found by A. Korn [31] in 1914 and Lichtenestein in 1916. A

simpler proof was given by S. S. Chern in [11] in 1955.

0.4.4 Beltrami equation

Let (x, y) be real coordinates on a 2-dimensional surface. Also assume

u(x, y), v(x, y) be two smooth functions such that w = u + iv. As customary,

we denote

wz =
1

2
(∂w
∂x

− i
∂w

∂y
), wz̄ =

1

2
(∂w
∂x

+ i
∂w

∂y
).

The differential equation defined by

(0.9) wz̄ = µwz, wz ≠ 0

where µ is a complex function satisfying ∣ µ ∣< 1, is called the Beltrami

equation.
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Now we recall a theorem in [40], which actually states the problem of

finding isothermal coordinates is reduced to finding a solution of Beltrami

equation.

Theorem 0.4.11 [40] Let E,F,G be C1−functions such that EG − F 2 > 0

and E,G > 0. Suppose

µ =
1
2(E −G) + iF

1
2(E +G) +

√
EG − F 2

.

If w(z) is a C1−solution of the Beltrami equation (0.9) near the origin, and

w(0) ≠ 0, then in a neighborhood of the origin, writing w(z) = u + iv, the

coordinates u, v are isothermal, i.e.

du2 + dv2 = λ(u, v)(Edx2 + 2Fdxdy +Gdy2).



Chapter 1

Shearfree geometry and CR

geometry

In this chapter we first collect some known facts about contact and also CR

manifolds. The Sasakian manifolds which are examples of CR manifolds are

introduced and we show that if the CR structure is preserved by the Reeb

vector field, then a CR manifold is Sasakian.

We conclude this chapter by introducing the notion of shearfree geometry

and its connection with CR geometry. We also provide some equivalent

definitions of the shearfree vector fields which are useful in the next chapter.

1.1 Contact geometry

1.1.1 Contact manifolds

Definition 1.1.1 A contact structure on a smooth manifold M of dimension

2n+ 1 is a distribution D of the tangent bundle of co-dimension 1 which can

be defined by a 1-form ω, Γ(D) = ker ω, satisfying

ω ∧ (dω)n ≠ 0.

Any such 1-form ω is called contact form. The manifold M equipped with a

contact structure D is called a contact manifold.

27
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We first note that any nonzero rescaling of a contact form is also a contact

form. Indeed, for any nonzero function α, we see that

d(αω) ≡ αdω mod{ω},

and

αω ∧ (dαω)n = αn+1ω ∧ (dω)n ≠ 0.

For any choice of the contact form ω, the Reeb vector field Z on M , is defined

by the conditions

Z ⌟ ω = 1, Z ⌟ dω = 0.

The Reeb vector field Z, is an infinitesimal automorphism of the contact

structure, i.e.

LZX ∈ Γ(D) ∀X ∈ Γ(D).

Cartan’s magic formula implies

LZω = d(Z ⌟ ω) +Z ⌟ dω = 0.

Furthermore, for any section X of D

LZ(ωX) = LZ (ω(X)) + ω(LZX) = ω(LZX)

is satisfied, which implies

ω(LZX) = LZ (ω(X)) = 0.

The following proposition shows that the converse statement is also true.

Proposition 1.1.2 A vector field Z on a contact manifold (M,D) that is

transversal to D is a Reeb vector field for some contact form ω if and only if

LZΓ(D) ⊂ Γ(D).

Proof We only need to proof the “if” statement. Assume that Z is an

infinitesimal automorphism of the contact structure D and transversal to D.
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Let ω be the unique contact form such that Z ⌟ ω = 1. We show that Z is

the Reeb vector field for ω, i.e.

Z ⌟ dω = 0.

Indeed, let X be a section of D then

dω(Z,X) = 1

2
{Zω(X) −Xω(Z) − ω([Z,X])} = 0.

Together with dω(Z,Z) = 0, this proves the claim.

In addition, for ω′ = βω the new Reeb vector field is the following

Z ′ = 1

β
(Z +X0),

where X0 is a section of D such that

X0 ⌟ (βdω + dβ ∧ ω) = −Z ⌟ (dβ ∧ ω)

is fulfilled. Refer also to [33].

1.1.2 Partially integrable almost CR manifold

Definition 1.1.3 A partially integrable almost CR manifold M is a contact

manifold with contact distribution D and a smooth family of endomorphisms

Jx∶Dx →Dx with J2
x = −Id. We assume that (M,D,J) is partially integrable,

i.e. the complex eigen-distribution

D1,0 ⊂D ⊗C

of J with eigenvalue i satisfies

[Γ(D1,0),Γ(D1,0)] ⊆ Γ(D ⊗C).

Lemma 1.1.4 Let (M,D,J) be an almost CR manifold. Then, M is par-

tially integrable if and only if

dλ(JX,JY ) = dλ(X,Y ), ∀X,Y ∈ Γ(D),

where λ is a contact form for the contact distribution D. This is also equiv-

alent to dλ(⋅, J ⋅) being symmetric.
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Proof For any X,Y ∈ Γ(D) the following

[X − iJX,Y − iJY ] = [X,Y ] − [JX,JY ] − i([X,JY ] + [JX,Y ])

is satisfied. Therefore, M is partially integrable if and only if

[X,Y ] − [JX,JY ] ∈ Γ(D), [X,JY ] + [JX,Y ] ∈ Γ(D).

Moreover,

dλ(JX,JY ) = 1

2
{(JX)λ(JY ) − (JY )λ(JX) − λ ([JX,JY ])}

= −1

2
λ([JX,JY ]),

since JX,JY ∈ Γ(D). Similarly,

dλ(X,Y ) = −1

2
λ([X,Y ]).

Thus, dλ(JX,JY ) = dλ(X,Y ) is equivalent to

[X,Y ] − [JX,JY ] ∈ Γ(D).

We now assume that dλ(JX,JY ) = dλ(X,Y ), is satisfied. It follows that

dλ(X,JY ) = −dλ(J2X,JY ) = −dλ(JX,Y ),

which is equivalent to

[X,JY ] + [JX,Y ] ∈ Γ(D).

Together with [X,Y ] − [JX,JY ] ∈ Γ(D), implies that M is partially inte-

grable. We also see this is equivalent to

dλ(X,JY ) = dλ(Y, JX),

since

dλ(X,JY ) = −dλ(J2X,JY ) = −dλ(JX,Y ) = dλ(JY,X).
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1.2 CR geometry

In this section we initially introduce the notion of an almost complex struc-

ture on a manifold.

1.2.1 Almost complex structure

Definition 1.2.1 Let M be a manifold and let V be a subbundle of TM ⊗C.

The pair (M,V ) is an almost complex manifold if

V ∩ V = {0}, and V ⊕ V = TM ⊗C

are satisfied. The subbundle V is called an almost complex structure.

Set dimC V = n, then it follows that dimRM = 2n.

Consider the complex manifold M with the coordinate system (z1, . . . , zn)
at a point p ∈M . The underlying almost complex structure is given by

V = linear spanC { ∂

∂z1
, . . . ,

∂

∂zn
},

where

( ∂

∂z1
, . . . ,

∂

∂zn
)

is a basis of TpM .

Here is another definition of an almost complex manifold.

Definition 1.2.2 Let M be a manifold and let Jp ∶ TpM → TpM be a family

of endomorphisms satisfying J2
p = −Id at each point p ∈M . The pair (M,J) is

called an almost complex manifold. The endomorphism J is called an almost

complex structure.

The above definitions of the almost complex manifold are equivalent.

Indeed, For a given (M,V ), we define the linear map J

J ∶ TM ⊗C→ TM ⊗C

such that

J(V ) = iV, J(V ) = −iV .
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The restriction of the map J to TM satisfies J2 = −Id.

Conversely, for a given (M,J), where J ∶ TM → TM with J2 = −Id, we

extend J by complex linearity, still denoted by J , from TM ⊗C to itself and

let V be the eigenspace corresponding to i.

Definition 1.2.3 An almost complex manifold (M,V ) is called integrable

if

[Γ(V ),Γ(V )] ⊂ Γ(V ),

that is, for all sections X,Y of the subbundle V , their commutator [X,Y ] is

also a section of V .

Equivalently, (M,J) is integrable if the Nijenhuis tensor defined by

(1.1) NJ(X,Y ) = J{[JX,Y ] + [X,JY ]} − [JX,JY ] + [X,Y ]

vanishes for all vector fields X,Y on M .

Example Let M be a complex manifold on complex dimension n. Also

assume that (z1 = x1 + iy1, . . . , zn = xn + iyn), is a holomorphic coordinate

system at point p ∈ M . The underlying almost complex structure at each

point p ∈M is given by

J( ∂

∂xα
) = ∂

∂yα
, J( ∂

∂yα
) = − ∂

∂xα
, α = 1, . . . n.

The converse statement of the example is not true in general. There are

almost complex manifolds which are not complex manifolds. The following

theorem shows that under some circumstances the almost complex structure

is complex.

Let the manifold M be real analytic, i.e. a manifold with real analytic

atlas. Fix some coordinates system from this real analytic atlas. Any almost

complex structure on the manifold has a basis of vectors with real analytic

complex-valued coefficients. We finalise this part with the following impor-

tant theorem.

Theorem 1.2.4 (Newlander-Nirenberg) [43] A Ck, k > 1, integrable al-

most complex structure is complex.
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1.2.2 CR manifolds

First of all, we give two equivalent definitions of CR manifolds.

Definition 1.2.5 Let M be a smooth real manifold of dimension 2n + 1.

We also assume that a complex subbundle V ⊂ TM ⊗C(complexified tangent

bundle) satisfies the following properties

(i) dimC V = n.

(ii) V is integrable, i.e. [Γ(V ),Γ(V )] ⊂ Γ(V ), which means the commutator

of sections of V is again a section of V .

(iii) V ∩ V = {0}.

Then, (M,V ) is called a CR manifold.

Definition 1.2.6 Let M be a smooth real manifold of dimension 2n+1. The

triple (M,D,J) is called a CR manifold if

(i) D ⊂ TM is a real subbundle of rank 2n.

(ii) J ∶ Γ(D) → Γ(D) is an endomorphism such that J2 = −Id.

(iii) If X,Y are in Γ(D), then so is [JX,Y ] + [X,JY ] and NJ(X,Y ) = 0.

We show that these two definitions are equivalent. Indeed, assume that

(M,V ) is given, then consider the subbundle

D ∶= ReV = {X +X ∶X ∈ Γ(V )},

and the endomorphism J defined by

J(X +X) = i(X −X).

The subbundle D is of codimension 1 with J2 = −Id. The integrability con-

ditions are also satisfied.
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On the other hand, given (M,D,J) as the CR structure, consider the

complexified of D, D⊗C. By complex linearity we define the endomorphism

on D ⊗C, still denoted by J , and set

D1,0 = {X ∈D ⊗C ∣ JX = iX} = {X − iJX ∣X ∈D}.

We show that D1,0 ∩D0,1 = {0}. Let T be a section of D1,0 ∩D0,1. Therefore,

there exists a vector field X on D such that

T =X − iJX =X + iJX,

which implies X = 0, since J is an invertible endomorphism. Thus,

D1,0 ∩D0,1 = {0}.

Let X − iJX and Y − iJY be sections of D1,0, where X,Y ∈ Γ(D). We then

have

[X − iJX,Y − iJY ] = [X,Y ] − i[X,JY ] − i[JX,Y ] − [JX,JY ]

= −J{[JX,Y ] + [X,JY ]} − i([X,JY ] + [JX,Y ])

= −i([X,JY ] + [JX,Y ] − iJ([X,JY ] + [JX,Y ])).

Since [X,JY ] + [JX,Y ] ∈ Γ(D), it follows that

i([X,JY ] + [JX,Y ] + iJ([X,JY ] + [JX,Y ]) ∈ Γ(D1,0).

Therefore, [X + iJX,Y + iJY ] ∈ Γ(D1,0).

1.2.3 Some examples of CR manifolds

Below we give some examples of the CR manifolds.

Examples 1. A real hypersurface in Cn+1 is a subset M of Cn+1 such that

for every point p ∈ M there is a neighborhood U of p in Cn+1 and a

real-valued function ρ defined in U such that

M ∩U = {z ∈ U ∶ ρ(z, z̄) = 0}
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with differential dρ ≠ 0 in U where z = (z1, . . . , zn+1). The function ρ is

called a defining function.

On any real hypersurface M in Cn+1, there exists a CR structure in-

duced from Cn+1. Indeed, let (z1 = x1 + iy1, . . . , zn+1 = xn+1 + iyn+1) be

a coordinate system at a point p ∈ Cn+1 and J be the canonical almost

complex structure on Cn+1, i.e.

J ∶ TCn+1 → TCn+1

given by

J( ∂

∂xα
) = ∂

∂yα
, J( ∂

∂yα
) = − ∂

∂xα
, α = 1, . . . , n + 1.

For any p ∈M , we set

(1.2) D = TM ∩ JTM.

We first note that

dimD ≥ 2n,

because

dimTM + dimJTM − dimD = dim(TM + JTM)

≤ dimTCn+1 = 2n + 2.

Assume that dimD = 2n + 1. Since D ⊂ TM , it follows that D = TM .

That is, TM ⊂ JTM and because dimJTM = 2n + 1, eventuality,

TM = JTM . Without loss of any generality we may assume that
∂

∂yn+2 /∈ TM = JTM , which implies ∂
∂xn+2 /∈ TM , which contradicts the

dimension of M . Hence, dimD = 2n. The restriction of J to D has

the property that J2 = −Id. We note that because Cn+1 is a complex

manifold, it is integrable, i.e. the Nijenhuis tensor vanishes and

J{[JX,Y ] + [X,JY ]} = [JX,JY ] − [X,Y ].

Moreover, if both W,JW are tangent to M , then W ∈ Γ(D). Thus,

[JX,Y ] + [X,JY ] and [JX,JY ] − [X,Y ] are tangent to M , which

implies [JX,Y ]+ [X,JY ] ∈ Γ(D). Hence, (M,D,J) is a CR manifold.
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2. In the next example we provide the details for the CR structure de-

fined on the Heisenberg group [13]. We consider Hn = Cn ×R with the

coordinates (z, t) = (z1, . . . , zn, t), where zj ∈ C, t ∈ R. By its definition

Hn is a smooth manifold of real dimension 2n + 1. Furthermore, Hn

becomes a group with the operation defined by

(z, t).(w, s) = (z +w, t + s + 2Im⟨z,w⟩)

where ⟨z,w⟩ = δjkzjw̄k. The smooth manifold Hn with the group op-

eration defined above is called Heisenberg group. We now explain the

construction of a CR structure on Hn. Let us consider the complex

vector fields Xj on Hn defined by

Xj =
∂

∂zj
+ iz̄j

∂

∂t
, j = 1, . . . , n.

We then define at each point (z, t) ∈ Hn, the space

V = {αjXj ∣αj ∈ C}.

We only need to check that the complex subbundle Hn is integrable,

that is, [Xj,Xk] ∈ Hn for all Xj,Xk ∈ Hn, j, k = 1 . . . , n. We compute

the commutator of Xj,Xk.

[Xj,Xk] = [ ∂

∂zj
+ iz̄j

∂

∂t
,
∂

∂zk
+ iz̄k

∂

∂t
] = [ ∂

∂zj
,
∂

∂zk
] + i[ ∂

∂zj
, z̄k

∂

∂t
]

+ i[z̄j ∂
∂t
,
∂

∂zk
] − [z̄j ∂

∂t
, z̄k

∂

∂t
]

= iz̄k[ ∂

∂zj
,
∂

∂t
] + iz̄j[ ∂

∂t
,
∂

∂zk
] − z̄kz̄j[ ∂

∂t
,
∂

∂t
] = 0.

Therefore, the pair (Hn, V ) is a CR manifold.

1.2.4 The Levi form

Definition 1.2.7 Let (M,V ) be a (2n + 1)-dimensional CR manifold. For

p ∈M , the Levi form is the bilinear form defined by

Lp ∶ Vp × Vp Ð→ (TpM ⊗C) /(Vp ⊕ V p)

Lp(Xp, Yp) =
1

2i
πp([X,Y ]p),(1.3)
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where X,Y are sections of V with X(p) = Xp and Y (p) = Yp. Here the map

πp is the natural projection

πp ∶ TpM ⊗CÐ→ (TpM ⊗C) /(Vp ⊕ V p).

The Levi form defined as above is Hermitian since,

Lp(Xp, Yp) =
1

2i
πp([X,Y ]p) = −

1

2i
πp([Y ,X]p) =

1

2i
πp([Y,X]p) = Lp(Yp,Xp).

Alternatively, for a given CR manifold (M,D,J), the Levi form is defined

as follows.

Lp ∶Dp ×Dp Ð→ TpM/Dp

Lp(Xp, Yp) = πp([X,JY ]p),

where X,Y are sections of D with X(p) =Xp and Y (p) = Yp. The map πp is

the projection

πp ∶ TpM Ð→ TpM/Dp.

The Levi form defined in the real case is symmetric. Indeed,

Lp(Xp, Yp) − Lp(Yp,Xp) = πp([X,JY ]p − [Y, JX]p) = πp([X,JY ]p + [JX,Y ]p)

= 0TpM/Dp ,

since [X,JY ] + [JX,Y ] is also a section of D.

Definition 1.2.8 A CR manifold (M,V ) is called

i) nondegenerate at the point p ∈ M , if Lp(Xp, Yp) = 0 for all Y ∈ Γ(D)
with Y (p) = Yp implies Xp = 0,

ii) strictly pseudoconvex at the point p ∈ M , if the Levi form is positive

definite (Lp > 0) or negative definite (Lp < 0).
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1.2.5 Cartan’s approach to 3-dimensional CR mani-

folds

Following Cartan [10] a 3-dimensional CR structure of M can also be (locally)

encoded as a choice of a real 1-form λ and a complex 1-form µ such that

(i) λ ∧ µ ∧ µ̄ ≠ 0

(ii) D = kerλ

(iii) µ∣D ○ J = iµ∣D for all sections X of D.

Then any other pair (λ′, µ′) of 1-forms defines the same CR structure if it is

related to (λ,µ) by

(1.4) λ′ = fλ, µ′ = hµ + lλ

where f ≠ 0 (real), h ≠ 0 and l are complex functions.

A 3-dimensional manifold M equipped with the class of pairs of 1-forms

[(µ,λ)] where the equivalence relation is defined by the transformations (1.4)

is also called CR manifold and denoted by (M, [(µ,λ)]).

1.2.6 Strictly pseudoconvex CR manifolds

A 3-dimensional CR structure on M can be alternatively defined by means

of vector fields as follows. Let (M,D,J) be a strictly pseudoconvex CR

manifold, i.e. for any (local) non-vanishing section X of D, [X,JX] /∈ D,

and ∂ = X − iJX and ∂̄ = X + iJX are the generators of D1,0 and D0,1

respectively. One can complement ∂, ∂̄ with

∂0 = i[∂, ∂̄] = −2[X,JX],

such that (∂, ∂̄, ∂0) forms a frame for the set of all sections of the complexified

tangent bundle on M . In the terminology of the CR geometry, e.g. [30] the

linear differential operator ∂̄ is called a CR operator.
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We denote the corresponding dual coframe by (µ, µ̄, λ). Strict pseudo-

convexity of M translates to

dλ ∧ λ ≠ 0,

since otherwise, dλ ∧ λ = 0 implies

dλ = cµ ∧ λ + c̄µ̄ ∧ λ

for some complex function c defined on M . On one hand, it is clear that

dλ(∂, ∂̄) = 0.

On the other hand,

dλ(∂, ∂̄) = 1

2
{∂λ(∂̄) − ∂̄λ(∂) − λ([∂, ∂̄])} = −1

2
λ([∂, ∂̄])

implies

[∂, ∂̄] = −2[X,JX] ∈ Γ(D),

which contradicts the strict pseudoconvexity of M . Our choice of the vector

fields ∂, ∂̄, ∂0 allows us to normalize λ and µ in the following way.

Lemma 1.2.9 Let (M,D,J) be a strictly pseudoconvex CR manifold. The

choice of the frame (∂, ∂̄, ∂0 = i[∂, ∂̄]) implies

dλ = iµ ∧ µ̄ + cµ ∧ λ + c̄µ̄ ∧ λ(1.5a)

dµ = αµ ∧ λ + βµ̄ ∧ λ,(1.5b)

where (µ, µ̄, λ) is the corresponding coframe and c,α, β are some complex-

valued functions on M .

Proof We first note that

[∂, ∂̄] = c1
12∂ + c2

12∂̄ + c3
12∂0 = −i∂0.

Then, Lemma 0.2.4 implies

dλ = −c3
12 µ ∧ µ̄ − c3

13 µ ∧ λ − c3
23 µ̄ ∧ λ = iµ ∧ µ̄ − c3

13 µ ∧ λ − c3
23 µ̄ ∧ λ,
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and since λ is a real 1-form it follows that

c3
13 = c̄3

23 = −c,

which implies

dλ = iµ ∧ µ̄ + cµ ∧ λ + c̄µ̄ ∧ λ.

To show (1.5b) is satisfied, we note that

dµ = −c1
12 µ ∧ µ̄ − c1

13 µ ∧ λ − c1
23 µ̄ ∧ λ = αµ ∧ λ + βµ̄ ∧ λ,

since c1
12 = 0.

Now, we are able to compute the commutators of the vector fields stated

above.

Corollary 1.2.10 The following statements are satisfied:

[∂, ∂0] = −α∂ − β̄∂̄ − c∂0(1.6a)

[∂̄, ∂0] = −β∂ − ᾱ∂̄ − c̄∂0.(1.6b)

Proof Lemma 0.2.4 and equations (1.5) give us the above statements for the

commutators.

From now on, without loss of any generality, we assume that the 1-forms µ,λ

satisfy (1.5).

We consider the representatives (µ,λ) and (µ′, λ′) with the transforma-

tion (1.4) satisfying

dλ = iµ ∧ µ̄ mod{λ}, dλ′ = iµ′ ∧ µ̄′ mod{λ′}.

Then there exists complex functions f ≠ 0 and h such that

(1.7) λ′ = ∣f ∣2λ, µ′ = f(µ + hλ).

This is because for λ′ = aλ and µ′ = fµ + `λ, where a ≠ 0 is a real function

and b ≠ 0, ` are complex functions, the normalization of λ′,

dλ′ = i
a

∣f ∣2
µ′ ∧ µ̄′ mod{λ′},
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implies a = ∣f ∣2, and as such µ′ can be written as

µ′ = f(µ + hλ),

where h = `
f .

Now we can fix our convention as follows: any other distinguished frame

(∂′, ∂̄′, ∂′0) and coframe (µ′, µ̄′, λ′) may be expressed through the original

frame and coframe by

∂′ = e−τ−iϕ ∂, ∂′0 = e−2τ (∂0 − h∂ − h̄∂̄),(1.8a)

µ′ = eτ+iϕ(µ + hλ), λ′ = e2τ λ,(1.8b)

where τ is a real-valued function, ϕ ∈ [0,2π) and h is a complex function.

For the choice (µ′, λ′) the functions α′, β′, c′ take the following forms:

Proposition 1.2.11 For the choice of the pair (λ′, µ′) defined by (1.8), the

following statements are satisfied

1. h = −i∂̄(τ + iϕ)

2. α′ = e2τ (α − ∂0(τ + iϕ) + h∂(τ + iϕ) + ∂h + hc)

3. β′ = e−2τ+2iϕ (β + h∂̄(τ + iϕ) + ∂̄h + c̄h)

4. c′ = e−τ−iϕ (c − 2ih̄ + ∂(τ + iϕ)).

Proof Let f ∶= eτ+iϕ. From (1.8) we have that

dµ′ = df ∧ µ + hdf ∧ λ + fdµ + fdh ∧ λ + fhdλ(1.9)

= (−∂̄f + ifh)µ ∧ µ̄ + (−∂0f + h∂f + fα + f∂h + cfh)µ ∧ λ

+ (h∂̄f + βf + f∂̄h + c̄fh)µ̄ ∧ λ.

On the one hand,

α′µ′ ∧ λ′ + β′µ̄′ ∧ λ′ = α′f ∣f ∣2µ ∧ λ + β′f̄ ∣f ∣2µ̄ ∧ λ.(1.10)

Comparing (1.9) and (1.10), we get

∂̄ log f = ih, −∂0f + h∂f + fα + f∂h + cfh = α′f ∣f ∣2,
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and also

β′f̄ ∣f ∣2 = h∂̄f + βf + f∂̄h + c̄fh.

Substituting f = eτ+iϕ into the above expressions gives α′ and β′.

To prove the last property, we notice that

dλ′ = d(ff̄λ) = f̄df ∧ λ + fdf̄ ∧ λ + ∣f ∣2dλ(1.11)

= f̄(∂f)µ ∧ λ + f̄(∂̄f)µ̄ ∧ λ + f(∂f̄)µ ∧ λ + f(∂̄f̄)µ̄ ∧ λ

+ i∣f ∣2µ ∧ µ̄ + c∣f ∣2µ ∧ λ + c̄ ∣f ∣2µ̄ ∧ λ

= i∣f ∣2µ ∧ µ̄ + (f̄∂f + f∂f̄ + c∣f ∣2)µ ∧ λ

+ (f∂̄f̄ + f̄ ∂̄f + c̄ ∣f ∣2)µ̄ ∧ λ

On the other hand,

iµ′ ∧ µ̄′ + c′µ′ ∧ λ′ + c̄′µ̄ ∧ λ′ = i∣f ∣2µ ∧ µ̄ + (i∣f ∣2h̄ + c′f ∣f ∣2)µ ∧ λ(1.12)

+ ( − i∣f ∣2h + c̄′f̄ ∣f ∣2)µ̄ ∧ λ.

Comparing (1.11) and (1.12), it follows that

f̄∂f + f∂f̄ + c∣f ∣2 = i∣f ∣2h̄ + c′f ∣f ∣2

and thus,

c′ = 1

f
(c − ih̄ + ∂ log ∣f ∣2).

1.3 Sasakian geometry

Sasakian manifolds are examples of CR manifolds. We first give the definition

of Sasakian manifolds based on Kähler manifolds. We begin with Kähler

structures which may be considered as special Riemannian structures.

1.3.1 Kähler manifolds

Definition 1.3.1 A Kähler structure on a Riemannian manifold (M,g) is

given by a closed real 2-form Ω, i.e. dΩ = 0 and an endomorphism J on

Γ(TM) satisfying the following conditions:
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(i) J is an almost complex structure of the tangent bundle, i.e. J2 = −Id.

(ii) g(X,Y ) = g(JX,JY ) ∀X,Y ∈ Γ(M).

(iii) Ω(X,Y ) = g(JX,Y ) ∀X,Y ∈ Γ(M).

(iv) J is integrable, i.e. Nijenhuis tensor defined by (1.1) vanishes.

Then (M,g,Ω, J) is called a Kähler manifold. We note that because of the

condition (i) the manifold M is of even dimension.

Let (S, gS, θ) be a contact Riemannian manifold of dimension 2n+1, that

is, a manifold S equipped with a Riemannian metric gS and a contact form

θ. We now consider the Riemannian metric

g = dr2 + r2gS

defined on the cone C(S) = R+ ×S where r is the coordinate along R+. Now

we have the following definition of a Sasakian manifold

1.3.2 Sasakian manifolds

Definition 1.3.2 A contact Riemannian manifold (S, gS, θ) is called Sasakian,

if (C(S), g,Ω, J) with Ω = d(r2θ) and the almost complex structure J defined

by

Ω(⋅, ⋅) = g(J ⋅, ⋅)

is a Kähler manifold.

A Sasakian manifold S is naturally embedded into its cone as a real hyper-

surface. Indeed, a Sasakian manifold can be considered as

S = S × {1} ⊂ C(S),

and the CR structure is naturally defined by

D = TS ∩ J(TS),
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where J is the almost complex structure on the cone.

We now recall from [2] the characterisation of the Sasakian manifolds in

the class of strictly pseudoconvex CR manifolds. For the convenience of the

readers we provide the proof.

Proposition 1.3.3 (Alekseevsky et al. [2]) Let (M,D,J) be a strictly

pseudoconvex CR manifold M of dimension 2n+1 with contact form θ where

D = ker θ and Z is the corresponding Reeb vector field to θ. Assume that Z

is an infinitesimal CR-automorphism, i.e.

LZJ = 0.

Then, M is Sasakian.

Proof The proof is local. Let ζ1, . . . , ζn be the generators of D1,0 and set

N = M × R+. We also assume that r is the coordinate along R+. We then

consider the vectors ζ1, . . . , ζn, Z − ir∂r, such that

(ζ1, . . . , ζn, ζ̄1, . . . , ζ̄n, Z − ir∂r, Z + ir∂r)

is a frame for the complexified tangent bundle of N . The endomorphism JN

defined on the tangent bundle of N given by

JN ∣D = J, JN(Z) = −r∂r, JN(r∂r) = Z,

is an almost complex structure on the tangent bundle of N and

(ζ1, . . . , ζn, Z − ir∂r)

are generators of T 1,0N . Now we check the integrability of J ∣N , that is, the

involutivity of T 1,0N . The endomorphism J ∣N is integrable on D due to the

involutivity of D1,0. We only need to check that

[Z − ir∂r, ζj] ∈ Γ(T 1,0N).

[Z − ir∂r, ζj] = [Z − ir∂r,X − iJX] = [Z,X − iJX]

= [Z,X] − i[Z,JX] = ([Z,X] − iJ[Z,X]) ∈ T 1,0N
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because LZJ = 0, where ζj = X − iJX, X ∈ Γ(D). Moreover, notice that the

metric defined on M by

g = dθ(J ⋅, ⋅) + θ2

is a Riemannian metric. We are now in the position to define the metric gN

given by

gN = r2g + dr2

and the 2-form Ω by

Ω = d(r2θ)

on N . The form Ω is clearly exact and hence, closed. We now show that these

structures are compatible, i.e. (N,g,Ω, J) is a Kähler manifold. We need to

show that g(JNX,Y ) = Ω(X,Y ) or equivalently gN(X,Y ) = Ω(JNX,Y ) is

satisfied, where X,Y ∈ Γ(N). If X,Y ∈ ker θ ∩ kerdr, then

gN(X,Y ) = r2g(X,Y ) = r2dθ(JX,Y ) = Ω(JX,Y ) = Ω(JNX,Y ).

If X = Z and Y ∈ ker θ, then

gN(X,Y ) = Ω(JNX,Y ) = 0.

If X = Y = Z, then

gN(Z,Z) = r2 = Ω(r∂r, Z) = Ω(JNZ,Z).

If X = r∂r and Y ∈ kerdr, then

gN(X,Y ) = Ω(JNX,Y ) = 0.

If X = Y = r∂r, then

gN(r∂r, r∂r) = r2 = Ω(−Z, r∂r) = Ω(JNr∂r, r∂r).

We also notice that the choice of the scaling function is unique: Let

JZ = hdr and gN = fg + dr2. Then the 2-form Ω is defined to be

Ω = d(fθ),
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since

gN(X,Y ) = Ω(JNX,Y ),

for X,Y ∈ ker θ ∩ kerdr and dΩ = 0. Furthermore,

f = 1

2
f ′h

because

gN(Z,Z) = f = f ′Ω(h∂r, Z) = Ω(JNZ,Z)

for X = Y = Z, and

h2 = 1

2
f ′h

because

gN(h∂r, h∂r) = h2 = f ′Ω(−Z,h∂r) = Ω(JNh∂r, h∂r).

Hence, because of
1

2
f ′ = h,

and

f = h2, f ′ = 2hh′,

it follows

h′ = 1, h = r, f = r2.

1.4 Shearfree congruences

In this section we first introduce the notion of shearfreeness which may be

interpreted as a generalisation of the conformal Killing equation.

A vector field p is called a conformal Killing if the following equation is

satisfied.

(1.13) Lpg = ρg

where ρ is a function defined on M. If ρ = 0, the vector field p is called

Killing vector.
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1.4.1 Shearfree vector fields

Definition 1.4.1 A shearfree congruence is an even-dimensional Lorentzian

manifold (M, g) equipped with a foliation into integral curves of a nowhere

vanishing vector field p, such that

(i) The vector field p is null, i.e. g(p, p) = 0.

(ii) Lpg = ρg + θ ∨ ψ, where θ = g(p, ⋅), ρ is a real function on M and ψ is

a 1-form. This condition means that the metric g changes conformally

under the flow of p if restricted to the subspaces

p⊥ = {X ∈ Γ(TM); g(X,p) = 0}.

We call p a shearfree vector field (with respect to (M, g)) if it satisfies con-

ditions (i) and (ii) above. The pair (g, p), is called a shearfree metric.

One can find some examples of shearfree metrics in the relevant chapters of

[63]. Here, we denote the symmetrized tensor product,

1

2
(g(p, .) ⊗ ψ + ψ ⊗ g(p, .))

by θ ∨ ψ.

Below we show that any null conformal Killing vector field is geodesic.

Lemma 1.4.2 Let (M, g) be a Lorentzian manifold and p be a null confor-

mal Killing vector field, that is, Lpg = ρg, where ρ is a real function defined

on M. Then, p is geodesic, i.e.

∇pp = fp,

where f is a real function on M and ∇ is the Levi-Civita connection.

Proof For any vector field W on p⊥, the identity (0.1b), for X = V = p

implies that

g(∇pp,W ) + g(p,∇pW ) = 0.
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On the other hand, the Kosul formula (0.2) yields

g(∇Wp, p) = 0.

Moreover,

[p,W ] = ∇pW −∇Wp

implies

g(p, [p,W ]) = g(p,∇pW ).

Therefore, on one hand,

(Lpg)(p,W ) = Lp (g(p,W )) − g(Lpp,W ) − g(p,LpW ) = −g(p,LpW ),

and on the other hand,

(Lpg)(p,W ) = ρg(p,W ) = 0,

which implies that

g(p,LpW ) = 0.

Finally, from

g(∇pp,W ) = −g(p,∇pW ) = −g(p, [p,W ]) = g(p,LpW ) = 0

it follows that ∇pp ∈ W ⊥ which means there exists a function f such that

∇pp = fp.

A shearfree vector field also possesses the same property. Hence, a shear-

free congruence is in fact a foliation of M into null-geodesics, which can be

interpreted as light rays.

Proposition 1.4.3 Any shearfree vector field p of a Lorentzian manifold

(M, g) is geodesic.

Proof It follows from Proposition 0.3.2 that for any null vector field p, L∗pp =
0 is satisfied. Substituting V = Y = p into (0.6),

(Lpg)(X,p) = −g(Lpp +L∗pp,X) = g(∇pp,X)(1.14)
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is satisfied. On the other hand, since p is shearfree, there exists a function ρ

and 1-form ψ such that

(Lpg)(X,p) = (ρg + θ ∨ ψ)(X,p) = ρg(X,p) + 1

2
g(p,X)ψ(p)(1.15)

= g ([ρ + 1

2
ψ(p)]p,X) = g(βp,X),

where β = ρ + 1
2ψ(p). Comparing the right hand sides of (1.14) and (1.15)

and also taking into account that g is non-degenerate, we see

∇pp = βp.

Notice that shearfreeness of p depends only on the conformal class of g

and is preserved under scaling of p. Such rescalings can be used to simplify

the structure in the sense of the following definitions.

Definition 1.4.4 A shearfree congruence is called diverging if the function

ρ in (ii) of the definition 1.4.1 does not vanish; it is called distinguished in

the opposite case, i.e. if ρ = 0.

A shearfree vector field p is said to be standard if

∇pp = 0.

We summarize some properties of the shearfree vector fields below.

Proposition 1.4.5 For a shearfree vector field p, the following properties

hold

1. Any rescaling of p is also a shearfree vector field.

2. The vector field p can be rescaled, so that ∇pp = 0, i.e. p is standard.

3. Being standard is equivalent to p ⌟ dθ = 0, which, in turn, is equivalent

to

Lpθ = d(p ⌟ θ) + p ⌟ dθ = 0.
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Proof For any nonzero function t, notice that

Ltpg = tLpg + g(p, ⋅) ∨ dt = tρg + tg(p, .) ∨ ψ + g(p, ⋅) ∨ dt

= ρ̂g + g(tp, ⋅) ∨ ψ̂,

where ρ̂ = tρ and ψ̂ = ψ + d log f , that is, tp is a shearfree vector field. To

prove that p can be made standard, notice that there exists a function β such

that

∇pp = βp,

since p is geodesic. Furthermore,

∇fpfp = 0

is equivalent to

β = −p(log f),

since

∇fpfp = fp(f)p + f∇fpp = fp(f)p + f 2∇pp = (fp(f) + f 2β)p.

To prove the third property, we first notice that for any vector field X

dθ(p,X) = 1

2
{p(X ⌟ θ) −X(p ⌟ θ) − [p,X] ⌟ θ}

= 1

2
{pg(p,X) − g(p, [p,X])} = 1

2
{g(∇pp,X) + g(p,∇pX)

− g(p,∇pX) + g(p,∇Xp)} =
1

2
{g(∇pp,X) + g(p,∇Xp)}

= 1

2
g(∇pp,X),

since it follows from the Koszul formula (0.2), that g(∇Xp, p) = 0. Therefore,

∇pp = 0 is equivalent to p ⌟ dθ = 0.

1.4.2 Shearfree congruences in Lorentzian manifolds

Some of the material provided in this subsection are well-known, and since

we are unaware of a precise reference to the literature we provide the details.
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LetM be a 4-dimensional manifold equipped with the Lorentzian metric

g of signature (3,1), and p be a nowhere vanishing null vector field over

M. We then consider the complexified tangent bundle of the manifold M,

C ⊗ TM, and extend the metric g by complex linearity, denoted also by g,

in the following form

g(X + iY,U + iV ) = g(X,U) − g(Y,V ) + i(g(X,V ) + g(Y,U)),

for all X,Y,U,V ∈ Γ(TM).
Then, there exists a complex frame (e1, e2, `, p) for the complexified tan-

gent bundle satisfying e1 = ē2 and

g(e1, e2) = g(`, p) = 1, g(`, `) = g(`, e1) = g(`, e2) = 0.

Indeed, because of the non-degeneracy of the metric g, there exists a null

vector field ` such that g(`, p) = 1. One can complement `, p by two real

orthonormal vectors ε1, ε2 such that (ε1, ε2, `, p) forms a frame for the tangent

bundle. Now we set

e1 =
1√
2
(ε1 − iε2), e2 =

1√
2
(ε1 + iε2).

Also assume that (θ1, θ2, θ3, θ4) is the dual coframe to (e1, e2, `, p) satisfying

(1.16) θ1 = θ̄2, θ3 = g(p, ⋅).

Hence, the metric g takes the following form

(1.17) g = 2(θ1θ2 + θ3θ4),

and the Gram matrix for both g and its inverse g−1 with respect to the frame

(e1, e2, `, p) and coframe (1.16) is of the following form

(1.18)

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

.
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The 1-forms defined by (1.16) are not unique and are defined up to the

subgroup of the Lorentz group preserving the null direction p. We consider

the null vector field

p′ = Ap,

where A is a nowhere vanishing real function defined onM. We also consider

the frame (e′1, e′2, `′, p′) defined by the following transformations

(1.19)

⎛
⎜⎜⎜⎜⎜⎜
⎝

e′1

e′2

`′

p′

⎞
⎟⎟⎟⎟⎟⎟
⎠

= T

⎛
⎜⎜⎜⎜⎜⎜
⎝

e1

e2

`

p

⎞
⎟⎟⎟⎟⎟⎟
⎠

, T 4
1 = T 4

2 = T 4
3 = 0, T 4

4 = A

such that the Gram matrix of the metric with respect to the transformations

(1.19), takes the form (1.18). After some straightforward computations, the

matrix T takes the form

(1.20)

⎛
⎜⎜⎜⎜⎜⎜
⎝

eiϕ 0 0 B

0 e−iϕ 0 B̄

− B̄A eiϕ −BA e−iϕ 1
A − ∣B∣2

A

0 0 0 A

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

where B is a complex-valued function. Therefore, the corresponding matrix

for the coframe (θ′1, θ′2, θ′3, θ′4) is of the form

(1.21)

⎛
⎜⎜⎜⎜⎜⎜
⎝

θ′1

θ′2

θ′3

θ′4

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

e−iϕ 0 B̄ 0

0 eiϕ B 0

0 0 A 0

−BA e−iϕ − B̄A eiϕ − ∣B∣2
A

1
A

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜
⎝

θ1

θ2

θ3

θ4

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

We now consider the complex functions σ and κ defined by

dθ1 ∧ θ1 ∧ θ3 = σ θ1 ∧ θ2 ∧ θ3 ∧ θ4(1.22a)

dθ3 ∧ θ1 ∧ θ3 = κθ1 ∧ θ2 ∧ θ3 ∧ θ4.(1.22b)

The next proposition relates the complex quantities σ and κ to the null vector

field p. One can see that vanishing or not, of both κ and σ, is independent
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of the choice of the coframe. The proof can be found in [25], and for the

convenience of the readers and in the sake of having the thesis self-contained,

we give the proof.

Proposition 1.4.6 (Hill et al. [25]) Vanishing or not of both functions σ

and κ simultaneously, is an invariant property of the congruence.

Proof Let (θ′1, θ′2, θ′3, θ′4) be the coframe given by (1.21). By straightfor-

ward computations, it follows that

dθ′3 ∧ θ′1 ∧ θ′3 = −κA2 e−iϕ θ1 ∧ θ2 ∧ θ3 ∧ θ4,

dθ′1 ∧ θ′1 ∧ θ′3 = A e−2iϕ dθ1 ∧ θ1 ∧ θ3 +AB e−iϕ dθ3 ∧ θ1 ∧ θ3

= (σA e−2iϕ +κAB e−iϕ)θ1 ∧ θ2 ∧ θ3 ∧ θ4.

The functions σ and κ are related to the frame and the metric as follows.

Proposition 1.4.7 (M, g) be a Lorentzian manifold and ∇ the correspond-

ing Levi-Civita connection. For the null vector field p, the relations

σ = g(e2,∇e2p), and κ = g(∇pe2, p)

are satisfied.

Proof From (1.22a), it follows that

dθ1 ∧ θ1 ∧ θ3(e1, e2, `, p) =
1

4
σ.

On the other hand,

p ⌟ (dθ1 ∧ θ1 ∧ θ3) = (p ⌟ dθ1) ∧ θ1 ∧ θ3 + (p ⌟ θ1)dθ1 ∧ θ3 − (p ⌟ θ3)dθ1 ∧ θ1

= (p ⌟ dθ1) ∧ θ1 ∧ θ3,

because p ⌟ θ1 = p ⌟ θ3 = 0. Therefore,

dθ1 ∧ θ1 ∧ θ3(e1, e2, `, p) = −
1

2
dθ1(e2, p).
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Moreover, since

dθ1(e2, p) =
1

2
(e2(p ⌟ θ1) − p(e2 ⌟ θ1) − θ1([e2, p])) = −

1

2
g(e2, [e2, p])

is satisfied thus,

σ = g(e2, [e2, p]).

Now the property (0.1b) of the Levi-Civita connection for X = p, Y =W = e2

gives

g(∇pe2, e2) = 0.

Therefore,

σ = g(e2,∇e2p) − g(e2,∇pe2) = g(e2,∇e2p).

A similar argument can be applied for κ.

We now show that vanishing of κ is equivalent to p being geodesic.

Proposition 1.4.8 The null vector field p is geodesic if and only if κ = 0.

Proof First we see that for the vector fields X,Y

dθ3(X,Y ) =X(θ3(Y )) − Y (θ3(X)) − θ3([X,Y ])

=Xg(p, Y ) − Y g(p,X) − g(p,∇XY −∇YX)

= g(∇Xp, Y ) + g(p,∇XY ) − g(∇Y p,X) − g(p,∇YX)

− g(p,∇XY ) + g(p,∇YX) = g(∇Xp, Y ) − g(∇Y p,X).

Moreover, the 2-form dθ3 can be expressed as a combination of the basis,

that is,

dθ3 = c12θ
1 ∧ θ2 + c13θ

1 ∧ θ3 + c14θ
1 ∧ θ4 + c23θ

2 ∧ θ3

+ c24θ
2 ∧ θ4 + c34θ

3 ∧ θ4.

Now, let κ = 0, which implies

dθ3 ∧ θ1 ∧ θ3 = 0.
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Wedging dθ3 by θ1 ∧ θ3 gives us that c24 = 0. Moreover, κ̄ = 0 yields that

dθ3 ∧ θ2 ∧ θ3 = 0.

Wedging dθ3 by θ2 ∧ θ3 implies that c14 = 0. We see then that

p ⌟ dθ3 = βθ3,

where β = −1
2c34. Furthermore,

Xg(p, p) = g(∇Xp, p) + g(p,∇Xp) = 2g(p,∇Xp) = 0

implies that for any vector field X

dθ3(p,X) = g(∇pp,X) = βθ3(X) = g(βp,X).

Hence, g(∇pp,X) = g(βp,X) and non-degeneracy of the metric implies

∇pp = βp.

To see the converse statement, we assume that ∇pp = βp. Because of

(0.1b), it follows that

pg(e2, p) = g(∇pe2, p) + g(e2,∇pp)

= g(∇pe2, p) + βg(e2, p) = g(∇pe2, p) = κ = 0.

Vanishing of κ and σ simultaneously, is equivalent to shearfreeness of the

vector field p. In order to clarify that we state the following lemma first.

Lemma 1.4.9 (Hill et al. [25]) Let σ = κ = 0 everywhere for the null vec-

tor field p. Then the following statements are satisfied:

(Lpθ
3) ∧ θ3 = 0(1.23a)

(Lpθ
1) ∧ θ1 ∧ θ3 = 0.(1.23b)

Proof The 2-form dθ3 can be written as

dθ3 = c12θ
1 ∧ θ2 + c13θ

1 ∧ θ3 + c14θ
1 ∧ θ4 + c23θ

2 ∧ θ3

+ c24θ
2 ∧ θ4 + c34θ

3 ∧ θ4,
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where cij’s are functions on M. Vanishing of κ implies that c14 = c24 = 0,

that is,

dθ3 = c12θ
1 ∧ θ2 + c13θ

1 ∧ θ3 + c23θ
2 ∧ θ3 + c34θ

3 ∧ θ4,

since

dθ3 ∧ θ3 ∧ θ2 = 0, dθ3 ∧ θ3 ∧ θ1 = 0.

Moreover, Cartan’s formula yields

Lpθ
3 = p ⌟ dθ3 + d(p ⌟ θ3) = p ⌟ dθ3 = βθ3,

where β = −1
2c34. Wedging both sides of the last equality with θ3 gives us

(1.23a). To show the second identity we note that the 2-form dθ1 is also

expressed as

dθ1 = a12θ
1 ∧ θ2 + a13θ

1 ∧ θ3 + a14θ
1 ∧ θ4 + a23θ

2 ∧ θ3

+ a24θ
2 ∧ θ4 + a34θ

3 ∧ θ4,

where aij is a function on M. The condition σ = 0 implies

dθ1 = a12θ
1 ∧ θ2 + a13θ

1 ∧ θ3 + a23θ
2 ∧ θ3 + a34θ

3 ∧ θ4.

Therefore, Cartan’s magic formula yields

Lpθ
1 = βθ3,

where β = −1
2a34. Wedging the last equation with θ1 ∧ θ3 gives (1.23b).

Theorem 1.4.10 σ = κ = 0 if and only if the null vector field p is shearfree.

Proof First we assume that the vector field p is shearfree, that is,

Lpg = ρg + g(p, ⋅) ∨ ν,

where ρ is a function and ν is a real 1-form. Therefore,

(Lpg)(e2, e2) = ρg(e2, e2) + g(p, ⋅) ∨ ν(e2, e2) = 0.
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On the other hand,

(Lpg)(e2, e2) = g(∇e2p, e2) + g(e2,∇e2p) = 2g(e2,∇e2p) = 2σ

is satisfied. Comparing the above expressions, if follows that σ = 0. Moreover,

from Proposition 1.4.3, the vector field p is geodesic and due to Lemma 1.4.8,

κ = 0.

For the converse statement, we notice that from Lemma 1.4.9, the condi-

tions σ = κ = 0 imply that

(1.24) Lpθ
3 = aθ3, Lpθ

1 = bθ1 + cθ3,

where b, c are complex functions and a is real. We then have

Lpg = Lpθ
1 ⊗ θ2 + θ1 ⊗Lpθ

2 +Lpθ
2 ⊗ θ1 + θ2 ⊗Lpθ

1(1.25)

+Lpθ
3 ⊗ θ4 + θ3 ⊗Lpθ

4 +Lpθ
4 ⊗ θ3 + θ4 ⊗Lpθ

3.

Substituting (1.24) into (1.25), we get

Lpg = ρg + θ3 ∨ ψ,

where ρ = b + b̄ and ψ = (cθ1 + c̄θ2 − (b + b̄ − a)θ4 +Lpθ4).

1.5 A Lift of a CR manifold

Three-dimensional CR manifolds are very closely related to the shearfree

congruences in 4-dimensional Lorentzian manifolds. They are well-known to

physicists for constructing nontrivial solutions for the Einstein equations in

the 4-dimensional Lorentzian space[55, 56, 57].

1.5.1 Shearfree metrics

Given a 3-dimensional CR manifold M , it is known [25] that, one can con-

struct a class of CR invariant metrics on the line bundleM=M×R equipped

with a shearfree congruence.
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For a given pair of the forms (µ,λ) on the CR manifold M , satisfying

(1.5) we introduce the conformal class of Lorentzian metrics defined on the

line bundle M=M ×R by

(1.26) g = 2P 2 (µµ̄ + λ(dr +Wµ +Wµ̄ +Hλ))

where r is the coordinate in the direction of R. Here, P is nowhere zero

(real), H (real) and W (complex) are some functions defined on M.

Here the symmetric tensor product µµ̄ is defined by

µµ̄ = 1

2
(µ⊗ µ̄ + µ̄⊗ µ)

The function r can also be another trivialising function. Precisely, let r′ =
r′(x, y, z, r) when (x, y, z) is the coordinate system at a point p ∈ M . If
∂r′

∂r ≠ 0, then r can be replaced by r′.

We also note that the 4-dimensional Lorentzian manifold M projects to

M by the natural projection

π ∶ M Ð→M,

and by abuse of notation, we denote the pullback of the forms on M by the

same notation. For instance, we denote by µ the pullback 1-form π∗(µ).

Lemma 1.5.1 The metric defined by (1.26), possesses the following proper-

ties

1. The vector field p = ∂r is a shearfree vector field, that is, (g, p) is a

sherafree metric.

2. The family of shearfree metrics is CR invariant. That is, the metric g′

corresponding to the alternative choice (µ′, λ′), given by (1.4), belongs

to the class of metrics.

Proof To show that the vector field p is shearfree, we just need to look at

the Lie derivative of the shearfree metric defined by (1.26) along the vector
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field p.

Lpg = ρg + 2P 2(Lpλ)(dr +Wµ +Wµ̄ +Hλ)

+ 2P 2λ(Lp(dr +Wµ +Wµ̄ +Hλ)

= ρg + P 2λψ = ρg + g(p, ⋅) ∨ ψ,

where ψ = 2Lp(dr +Wµ +Wµ̄ +Hλ). We note that

Lpλ = p ⌟ dλ + d(p ⌟ λ) = 0,

and also

g(p, p) = 0, g(p, ∂) = 0, g(p, ∂̄) = 0, g(p, λ) = P 2.

Let (µ′, λ′) be another representative relating to (µ,λ) with the transforma-

tion given by (1.7). We then have

g′ = 2P ′2 (µ′µ̄′ + λ(dr +W ′µ′ +W ′µ̄′ +H ′λ′))

= 2P 2 (µµ̄ + λ(dr +Wµ +Wµ̄ +Hλ)) ,

where

P = P ′∣f ∣, W = h̄ +W ′f, H = ∣h∣2 +W ′fh +W ′f̄ h̄ + ∣f ∣2H ′.

Having chosen a representative (µ,λ) from the CR structure and a Lorentzian

metric g ∈ [g], will give the following definition.

Definition 1.5.2 Let (M, [(µ,λ)]) be a 3-dimensional CR manifold satisfy-

ing (1.5). The pair (g, ∂r), where g ∈ [g] defined by (1.26) on the trivial line

bundle M ×R is called a lift of the CR manifold to a spacetime.

Now the following theorem holds.

Theorem 1.5.3 (Hill et al.[25]) Let (M, g) be a 4-dimensional Lorentzian

manifold. Suppose thatM is foliated by a 3-parameter family of curves which

are shearfree geodesics. Then M is locally a cartesian product M = M × R
with M being a 3-dimensional CR manifold. The CR structure (M, [(µ,λ)])
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on M is uniquely determined by (M, g) and the shearfree congruence on M.

If r is a real coordinate such that k = ∂r is tangent to the congruence, then the

Lorentzian metric g onM can be locally represented by (1.26) with some spe-

cific functions P,W,H depending on the choice of the representatives (µ,λ)
of the corresponding CR structure.

Refer to, e.g. [25] and references therein for a detailed proof.

In chapter 4, we generalise Theorem 1.5.3 for the subconformal and almost

CR manifolds.



Chapter 2

Shearfree geometry and the

embedding of CR manifolds

In this chapter, we first explain the embedding problem in more details and

give some examples of embeddable CR manifolds. We also explain the ap-

proach used in [25] to show that the embeddability of a 3-dimensional CR

manifold is related to the existence of a solution of Maxwell’s equations in ad-

dition to vanishing of some components of the Ricci curvature of the shearfree

Lorentzian metric corresponding to the CR structure.

The most famous approach relating a CR manifold to a conformal Lorentzian

manifold is the Fefferman metric, which will be explained in this chapter.

2.1 Embedding of 3-dimensional CR mani-

folds

We recall from (1.2), that any smooth real hypersurface in C2 has a CR

structure inherited from C2. Now let (M3,D, J) be any CR manifold. The

(local) embeddability (or realisability) problem, asks if there exists a (local)

embedding

ι ∶M → C2

61
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such that the CR structures on ιM induced by ι and by C2, coincide. In

other words,

ι∗∂ = a(z1, z2)
∂

∂z1

+ b(z1, z2)
∂

∂z2

at each point of ιM , where (z1, z2) are holomorphic coordinates on C2 and

∂̄ =X + iJX, and ∂ =X − iJX

for some non-vanishing section X of D. This problem is equivalent to finding

two non-constant functionally independent CR functions, that is, solutions

to the complex linear PDE

(2.1) ∂̄φ = 0,

where two CR functions φ1 and φ2 are called functionally independent pro-

vided

dφ1 ∧ dφ2 ≠ 0.

Indeed, if there exist two non-constant functionally independent CR functions

φ1 = φ1(x, y, u) and φ2 = φ2(x, y, u), where (x, y, u) are coordinates on M ,

then we are able to define the embedding ι ∶M → C2 as follows

ι(x, y, u) = (φ1(x, y, u), φ2(x, y, u)) ∈ C2,

since for any vector field X in M

ι∗(X) =X(φ1)
∂

∂φ1

+X(φ̄1)
∂

∂φ̄1

+X(φ2)
∂

∂φ2

+X(φ̄2)
∂

∂φ̄2

is satisfied. Hence, X = ∂ implies

ι∗∂ = ∂φ1
∂

∂φ1

+ ∂φ2
∂

∂φ2

,

since ∂̄φ1 = ∂̄φ2 = 0. For the converse statement assume that ∂̄ is the CR

operator on M and that (z1, z2) are the holomorphic coordinates on C2. At

any point, ∂̄ is a linear combination of ∂
∂z̄1

and ∂
∂z̄2

. The restriction of (z1, z2)
to M implies that

∂̄φ1 = ∂̄φ2 = 0
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with dφ1 ∧ dφ2 ≠ 0 where φ1 = z1 and φ2 = z2.

It is also worthwhile to mention that any holomorphic function of a CR

function is also a CR function. Indeed, let φ ∶ M → C be a CR function,

i.e. ∂̄φ = 0. Take (x, y, u) to be a coordinate system at a point p ∈ M , and

f ∶ C → C a holomorphic function, i.e ∂f
∂w̄ = 0, where w ∈ C. Therefore, the

CR operator ∂̄ can be expressed as

∂̄ = γ1
∂

∂z1
+ γ2

∂

∂z̄1
+ γ3

∂

∂z2
+ γ3

∂

∂z̄2
,

where γi is a complex function and z1 = x + iy and u = Rel z2, where (z1, z2)
is the coordinate system of C2. Then the chain rule implies

∂

∂z̄j
(f ○ φ) = ∂f

∂w

∂φ

∂z̄j
+ ∂f

∂w̄

∂φ̄

∂z̄j
= ∂f

∂w

∂φ

∂z̄j
,

and
∂

∂zj
(f ○ φ) = ∂f

∂w

∂φ

∂zj
+ ∂f

∂w̄

∂φ̄

∂zj
= ∂f

∂w

∂φ

∂zj
,

where j = 1,2. Therefore,

∂̄(f ○ φ) = ∂f

∂w
(γ1

∂φ

∂z1
+ γ2

∂φ

∂z̄1
+ γ3

∂φ

∂z2
+ γ3

∂φ

∂z̄2
) = ∂f

∂w
∂̄φ = 0.

Not all 3-dimensional CR manifolds are embeddable. The first counterex-

amples appeared in the context of linear partial differential equations by H.

Lewy in [39, 38]. L. Nirenberg proved in the works [44, 45] that the PDE

(2.1) has no solution but constant functions where the operator ∂ is defined

by

∂ = a1
∂

∂x
+ a2

∂

∂y
+ a3

∂

∂u
= ∂1 + i∂2

for complex functions aj = aj(x, y, u), where (x, y, u) is a coordinate system at

a point in a neighborhood of R3, with ∂1, ∂2 and [∂1, ∂2] linearly independent

[44, 45].

There are also some CR structures, which admit a non-constant CR func-

tion φ and every other CR function is a holomorphic function of φ [59]. Refer

to [27, 51, 15, 14] for more examples of non-embeddable CR manifolds.

We now consider a 3-dimensional CR manifold (M, [(µ,λ)]) satisfying

(1.5) and also assume a CR function ζ exists. Let ζ = x+ iy and µ = dζ. One



2.1. EMBEDDING OF 3-DIMENSIONAL CR MANIFOLDS 64

can choose a real coordinate u such that (x, y, u) is a coordinate system at

a point p ∈ M . The operator ∂ can be written as a linear combination of

∂ζ , ∂ζ̄ , ∂u. By rescaling ∂, we get

∂ = ∂ζ −L∂u, ∂0 = i(∂̄L − ∂L̄)∂u,(2.2)

where L(z, z̄, u) is a complex-valued function subject to

∂̄L − ∂L̄ ≠ 0.

The 1-form λ takes the form

λ = du +Ldz + L̄dz̄
i(∂̄L − ∂L̄)

.(2.3)

In addition, the complex function c defined by (1.5a) is of the following form

c = −∂ log(∂̄L − ∂L̄) − ∂uL.

Refer also to [23].

The following lemma plays a crucial role in finding a CR function.

Lemma 2.1.1 [25] Let ϕ be a smooth complex-valued 1-form defined locally

in Rn, n ≥ 3, such that ϕ ∧ ϕ̄ ≠ 0. Then,

dϕ ∧ ϕ ≡ 0

if and only if there exists a smooth complex function ζ and a smooth non-

vanishing complex function h such that

ϕ = hdζ, dζ ∧ dζ̄ ≠ 0.

The proof provided here is slightly different from the one given in [25].

Proof Let ϕ be a complex 1-form defined in a neighborhood U ∈ Rn such

that ϕ ∧ ϕ̄ ≠ 0 and dϕ ∧ ϕ = 0. We define the real 1-forms ϕ1 = Reϕ and

ϕ2 = Imϕ. The condition ϕ ∧ ϕ̄ ≠ 0 implies ϕ1 ∧ ϕ2 ≠ 0, since

ϕ ∧ ϕ̄ = (ϕ1 + iϕ2) ∧ (ϕ1 − iϕ2) = −2iϕ1 ∧ ϕ2.
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On the other hand, from dϕ ∧ ϕ = 0, the following identity

dϕ1 ∧ ϕ1 − dϕ2 ∧ ϕ2 + i(dϕ2 ∧ ϕ1 + dϕ1 ∧ ϕ2) = 0,

is satisfied. We now consider the real and imaginary parts of the above

expression.

dϕ1 ∧ ϕ1 − dϕ2 ∧ ϕ2 = 0,

dϕ2 ∧ ϕ1 + dϕ1 ∧ ϕ2 = 0.

For dimensions n ≥ 4, wedging the above equations with ϕ2 gives

dϕ1 ∧ ϕ1 ∧ ϕ2 = 0, dϕ2 ∧ ϕ1 ∧ ϕ2 = 0.

In dimension n = 3, the above expressions are automatically satisfied. We

can now apply the Frobenius theorem for the real 1-forms ϕ1, ϕ2. Therefore,

there exists a coordinate system (x, y, u`), ` = 3, . . . , n in U such that

ϕ1 = f 1
1dx + f 1

2dy, ϕ2 = f 2
1dx + f 2

2dy,

where fk` are some real functions such that f 1
1 f

2
2 − f 1

2 f
2
1 ≠ 0. Thus the 1-form

ϕ can be expressed as

ϕ = c1dx + c2dy,

where c1 = f 1
1 + if 2

1 and c2 = f 1
2 + if 2

2 , satisfying

c1c̄2 − c̄1c2 = −2i(f 1
1 f

2
2 − f 1

2 f
2
1 ) ≠ 0.

We also see that neither c1 nor c2 can be zero. Using the complex coordinate

z = x + iy and taking into account that

dz = dx + idy, dz̄ = dx − idy

the complex 1-form ϕ takes the following form

ϕ = c1 − ic2

2
dz + c1 + ic2

2
dz̄.

We first consider the cases that either c1 = ic2 or c1 = −ic2. In any of these

cases, the 1-form ϕ can be written as ϕ = hdζ where h ≠ 0. Suppose neither
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c1 = ic2 nor c1 = −ic2 are satisfied. Therefore, If c1 − ic2 ≡ 0, then ϕ = hdζ
where h = 2ic2 and ζ = z̄. for the functions h(z, z̄) and ζ(z, z̄), we set

ϕ = c1 − ic2

2
[dz + c1 + ic2

c1 − ic2

dz̄] = hζz(dz +
ζz̄
ζz
dz̄), ζz ≠ 0.

We now consider the equation

(2.4) ζz̄ = µζz, ζz ≠ 0, µ = c1 + ic2

c1 − ic2

.

The rest of the proof splits into two cases:

1. If f 1
1 f

2
2 − f 1

2 f
2
1 > 0, then

∣ µ ∣< 1.

In fact, it follows that

∣c1 + ic2

c1 − ic2

∣
2

= ∣ c1 ∣2 + ∣ c2 ∣2 −i(c1c̄2 − c̄1c2)
∣ c1 ∣2 + ∣ c2 ∣2 +i(c1c̄2 − c̄1c2)

= ∣ c1 ∣2 + ∣ c2 ∣2 −2(f 1
1 f

2
2 − f 1

2 f
2
1 )

∣ c1 ∣2 + ∣ c2 ∣2 +2(f 1
1 f

2
2 − f 1

2 f
2
1 )

< 1.

The Beltrami equation given by (2.4) has a smooth solution ζ since the

function µ is smooth. Then it follows that

ϕ = hdζ, h = c1 − ic2

2ζz
.

2. If f 1
1 f

2
2 − f 1

2 f
2
1 < 0, we then consider the conjugate of ϕ. We have that

ϕ̄ = c̄1 + ic̄2

2
[ c̄1 − ic̄2

c̄1 + ic̄2

dz + dz̄] = h̄ζ̄z̄(
ζ̄z
ζ̄z̄
dz + dz̄).

A straightforward computation shows that

1

∣ µ̄ ∣
< 1.

Therefore, the Beltrami equation

ζ̄z̄ =
1

µ̄
ζ̄z

has a solution. Thus,

ϕ = hdζ, h = c1 − ic2

2ζz
,

is satisfied.
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2.1.1 The Embedding problem

We now recall some well-known results regarding the embaddability of strictly

pseudoconvex CR manifolds. The first one is a global result by Boutet de

Monvel, who proved that

Theorem [Boutet de Monvel, [6] ] Let M be a (2n+1)-dimensional com-

pact strictly pseudoconvex CR manifold with n ≥ 2. Then M is embeddable

in Cn+1.

For the case n = 1, the counterexamples were provided by H. Grauert [22],

H. Rossi [60] and D. Burns [9]. See also [41] for more details.

In 1982, M. Kuranishi proved that CR manifolds of dimension 2n + 1,

with n ≥ 4, are embeddable. After that, T. Akahori showed that it is also

true for n = 3. Thus, the following theorem holds.

Theorem [Kuranishi [32] and Akahori, [1] ] Any strictly pseudoconvex

(2n + 1)-dimensional CR manifold with n ≥ 3, is embeddable in Cn+1.

2.1.2 Some examples of embeddable CR manifolds

The next theorem guarantees that any real analytic CR manifold of dimen-

sion 2n + 1 is locally embeddable. For the convenience of the readers we

provide the following proof [29].

Theorem 2.1.2 [29] Any real analytic CR manifold is locally embeddable.

Proof Let (M,V ) be a CR manifold of dimension 2n + 1. Also assume

(x1, . . . , x2n+1) is the coordinate system at a point x ∈ U ⊂M . The vectors

Lj =
2n+1

∑
k=1

αjk(x1, . . . , x2n+1)
∂

∂xk
, j = 1, . . . , n,

form a basis for V with each component αjk a real analytic function at x ∈ U .

Because of the integrability condition we have

[Lj, L`] =
n

∑
r=1

βjkr(x1, . . . , x2n+1)Lr, j, ` = 1, . . . , n,
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where each component βjkr is a real analytic complex-valued function. Since

dimC V = n it implies that there is an element of the basis which does not

belong to the set of generators of V and without loss of generality we may

assume ∂
∂x2n+1

/∈ V . We now complexify the coordinate x2n+1 and extend the

function αjk by real analyticity and set

Mj =
2n+1

∑
k=1

αjk(x1, . . . , x2n, x2n+1 + it) ∂

∂xk
, j = 1, . . . , n,

and also define the operator

Mn+1 =
∂

∂2n+1

+ i
∂

∂t

with the real coordinate t. We now consider the subbundle of the complexified

tangent bundle defined by

V0 = linear spanC{M1, . . . ,Mn+1}.

We show that the almost complex structure V0 is integrable. For the indices

j, ` ≠ n + 1, the commutators [Mj,M`] are sections of V0 because of the

integrability condition on V . It just remains to check that the commutator

of Mn+1 and Mj for j = 1, . . . , n is also a section of V0. To do that, we notice

[Mj,
∂

∂t
] =

2n+1

∑
r=k

γjk(x1, . . . , x2n, x2n+1 + it) ∂

∂xk
,

which is a section of V0. Thus, the subbundle V0 is a real analytic inte-

grable almost complex structure and by Newlander-Nirenberg theorem 1.2.4,

is complex. Now, M is given as the hypersurface {t = 0} in this complex

structure.

It is interesting that the theorem above is also true globally [4].

Other interesting class of examples of embeddable CR manifolds are

Sasakian manifolds. Indeed, any Sasakian manifold S is embedded into its

cone

C(S) = R+ × S,
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and thus, is locally embedded into C2.

There are lots of surveys around embeddability of 3-dimensional CR man-

ifolds. For instance, we conclude this part by recalling two remarkable theo-

rems by H. Jacobowitz in [28], which we use later.

The first theorem is the following

Theorem 2.1.3 (Jacobowitz) [28] The following statements are equiva-

lent

1. A CR manifold (M2n+1,D, J) is embeddable in a neighborhood of the

point p ∈M .

2. There exists a complex vector field Y with LY Γ(D0,1) ⊂ Γ(D0,1) and

Y ∉ Γ(D1,0 ⊕D0,1).

Here the Lie bracket of a complex vector field X =X1+iX2 along the complex

vector field Y = Y1 + iY2, means

[Y,X] = [Y1 + iY2,X1 + iX2] = [Y1,X1] − [Y2,X2] + i([Y1,X2] + [Y2,X1]).

In our setting (1.5), the complex vector field Y is expressed as

Y = γ1∂ + γ2∂̄ + γ3∂0,

where γ1, γ2 and γ3 ≠ 0 are complex functions satisfying the following PDE’s

iγ1 − c̄γ3 + ∂̄(γ3) = 0,

∂̄(γ1) − γ3β = 0.

Another theorem by H. Jacobowitz [28] provides a criterion for embed-

dability of CR manifolds in terms of the canonical bundle of the CR structure.

We first introduce the notion of the canonical bundle of a CR manifold.

2.1.3 The canonical bundle of a CR manifold

Definition 2.1.4 Let (M,D,J) be a CR manifold of dimension 2n + 1 and

DC =D1,0 ⊕D0,1 the eigenspace decomposition of J . The canonical bundle is

K = {Ω ∈ Λn+1(M) ⊗C ∶ ∀L ∈D0,1, L ⌟Ω = 0},
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where Λn+1(M) is the space of smooth (n + 1)-forms on M .

The canonical bundle K is a complex line bundle over M . Indeed, let

D1,0 = linear spanC{L1, . . . , Ln},

and (µ1, . . . , µn) be the dual coframe of (L1, . . . , Ln). One can complement

(µ1, . . . , µn, µ̄1, . . . , µ̄n) with a real 1-form λ such that

(µ1, . . . , µn, µ̄1, . . . , µ̄n, λ)

is a coframe of the space of 1-forms on the complexified tangent bundle over

M . Then any (n + 1)-form Ω can be written as a linear combination of

(n + 1)-forms generated by (µ1, . . . , µn, µ̄1, . . . , µ̄n, λ). The conditions

L̄i ⌟Ω = 0, i = 1, . . . , n,

simply imply that Ω is a multiple of

µ1 ∧ ⋅ ⋅ ⋅ ∧ µn ∧ λ,

which means K is a complex bundle of rank one.

In dimension 3, in our setting, the canonical bundle corresponding to the

CR manifold (M, [(µ,λ)]) is the bundle spanned by the complex 2-form µ∧λ.

Among the non-vanishing sections of the canonical bundle, the d-closed

ones play an important role in the embedding of CR manifolds. The following

proposition relates the existence of a non-vanishing d-closed section of the

canonical bundle to a ∂̄-problem.

Proposition 2.1.5 A CR manifold (M, [(µ,λ)]) admits locally a nowhere

zero d-closed section of the canonical bundle if and only if the ∂̄-problem

(2.5) ∂̄ logψ = −c̄

has a solution. Here c is the structure function from (1.5a).
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Proof Taking into account (1.5a),

d(ψµ ∧ λ) = ∂̄ψ µ̄ ∧ µ ∧ λ − c̄ψµ ∧ µ̄ ∧ λ = (∂̄ψ + c̄ψ) µ̄ ∧ µ ∧ λ

vanishes if and only if (2.5) is satisfied with non-vanishing ψ.

We also recall the notion of strongly independent functions. The complex-

valued functions φ1, . . . , φn are strongly independent at a point if

dφ1 ∧ ⋅ ⋅ ⋅ ∧ dφn ∧ dφ̄1 ∧ ⋅ ⋅ ⋅ ∧ dφ̄n ≠ 0

is satisfied. In dimension 3, the above condition simply reduces to the exis-

tence of a CR function φ with dφ∧dφ̄ ≠ 0. Moreover, the condition dφ∧dφ̄ ≠ 0

is equivalent to ∂φ ≠ 0, since

dφ ∧ dφ̄ = ∣∂φ∣2µ ∧ µ̄ + ∂φ∂0φ̄µ ∧ λ − ∂̄φ̄∂0φµ̄ ∧ λ,

which implies ∂φ ≠ 0. The converse is also true.

Theorem 2.1.6 (Jacobowitz) [28] Let (M,D,J) be a CR manifold of di-

mension 2n+1. Suppose that near some point p ∈M , the CR manifold has n

strongly independent CR functions. If the canonical bundle associated with

the CR manifold has a non-vanishing d-closed section, then the CR manifold

is embeddable near p.

The converse of the above theorem is also true. Let φ1, . . . , φn+1 be n + 1

functionally independent CR functions, i.e

dφ1 ∧ ⋅ ⋅ ⋅ ∧ dφn+1 ≠ 0, L̄j(φk) = 0, j,= 1, . . . , n, k = 1, . . . , n + 1,

where

D1,0 = linear spanC{L1, . . . , Ln}.

The non-vanishing (n + 1)-form Ω defined by

Ω = dφ1 ∧ ⋅ ⋅ ⋅ ∧ dφn+1

is a d-closed section of the canonical bundle.

As a consequence of Theorem 2.1.6 we have the following theorem.
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Theorem 2.1.7 Let (M, [(µ,λ)]) be a CR manifold satisfying (1.5). The

CR manifold M is embeddable if and only if there exists a representative

(µ,λ) with β = 0 and α nowhere zero.

Proof Assume for the representative (µ,λ) of 1-forms, β = 0 and α /≡ 0.

From (1.5b) it follows that

dµ = αµ ∧ λ.

The right hand side of the above expression is a non-zero section of the

canonical bundle, since α ≠ 0 and the left hand side guarantees that it is

d-closed. Moreover, wedging both sides with µ implies that

dµ ∧ µ = 0, with µ ∧ µ̄ /≡ 0.

Therefore, Lemma 2.1.1 guarantees that there exists complex functions γ, ζ

such that µ = γdζ satisfying dζ ∧ dζ̄ ≠ 0. The CR function ζ and the nonzero

d-closed section of the canonical bundle fulfil the conditions of Theorem 2.1.6

and hence, the CR manifold M is embeddable.

For the converse statement we first note that for the representative (µ′, λ′),
because of Proposition 1.2.11, the condition β′ = 0 is equivalent to saying that

−ih̄ is a solution of the PDE

∂u + u(c − u) = iβ̄,

and also non-vanishing of α′ is equivalent to

α ≠ ∂0 log f + h∂(log f) + ∂h + hc,

where β,α are corresponding functions to the choice (µ,λ). Now let the CR

manifold be embeddable, i.e. there are CR functions z = x + iy and ζ such

that

dz ∧ dζ ≠ 0.

One can choose the real coordinate u in such a way that (x, y, u) forms a

coordinate system on M . We define the forms (µ′, λ′) as follows

λ′ = ∣ζ ∣2λ, µ′ = ζµ,
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where µ = dz and λ given by (2.3). It is now obvious that the functions

β = α = 0. By definition the function h = 0, introduced in (1.7), is a solution

of

∂u + u(u − c) = 0.

Therefore, for the new representative we have β′ = 0. It just remains to show

that

α′ = − 1

∣f ∣2
∂0ζ ≠ 0

which is automatically satisfied from

dz ∧ dζ = (∂zdz + ∂0zλ) ∧ (∂ζdz + ∂0ζλ) = ∂0ζdz ∧ λ,

because ∂z = ∂zz = 1 and ∂0z = A∂uz = 0, where A is defined by (2.2).

We note that the case α = 0, β = 0 gives one CR function and the CR

manifold M , may or may not be embeddable.

The following lemma which can be also found in [25], Lemma 3.23, is a

consequence of Theorem 2.1.6. Here we give a shorter proof.

Lemma 2.1.8 Let M be a CR manifold satisfying (1.5) with µ = dζ and

dζ ∧dζ̄ ≠ 0. If in addition, the CR manifold admits a solution to the equation

∂0∂η = 0, with ∂0η ≠ 0.

Then, M is embeddable.

Proof We first notice from (1.6a) that

[∂, ∂0]η = ∂∂0η − ∂0∂η = ∂∂0η = −c∂0η,

which is also equivalent to

∂̄ logψ = −c̄,

where ψ = ∂0η. Therefore, the non-zero 2-form

ψµ ∧ λ

is a d-closed section of the canonical bundle and hence, the CR manifold is

embeddable.
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The next lemma which can also be found in [70] is another consequence of

Theorem 2.1.6. The proof in [70] is completed by finding two functionally

independent CR functions directly while showing that the existence of one

CR function also admits a d-closed section of the canonical bundle.

We first note from (1.5) that taking exterior derivative of dλ implies

∂c̄ − ∂̄c = i(α + ᾱ).(2.6)

In the case where a CR function ζ exists, one can choose the 1-form µ to be

µ = dζ, and, therefore, α = 0. Hence,

∂̄c = ∂c̄.

Lemma 2.1.9 Suppose a given CR manifold M admits a CR function ζ.

Also assume the complex function c defined by (1.5a) does not depend on u,

where (x, y, u) is the coordinate system at a point p ∈ M and µ = dζ with

ζ = x + iy. Then the CR manifold is locally embeddable.

Proof We consider the system of complex PDEs

⎧⎪⎪⎨⎪⎪⎩

∂ζϕ = −c

∂ζ̄ϕ̄ = −c̄

and we claim that the system has at least one real-valued solution. Since

∂uc = 0, it follows from ∂c̄ = ∂̄c that

∂ζ c̄ = ∂ζ̄c.

Substituting c = a + ib and ∂ζ = 1
2(∂x − i∂y) into the above equation gives us

bx = −ay,(2.7)

where a = a(x, y) and b = b(x, y). On the other hand, for a real function ϕ,

the system is equivalent to

(2.8)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ϕx = −2a

ϕy = 2b.
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Therefore, the condition (2.7) implies the existence of a real-valued function

ϕ which does not depend on u. In addition, we take into account that

∂ϕ = ∂ζϕ −L∂uϕ = ∂ζϕ = −c,

admits a non-vanishing d-closed section of the canonical bundle and thus, by

Theorem 2.1.6, the CR manifold is embeddable.

2.2 Embedding problem and shearfree metric

Lewandowski et al. in [37] and also Hill et al. in [25] prove a series of embed-

dability results in terms of shearfree congruences of Lorentzian manifolds.

In order to present the main result of [25] we first need to recall the notion

of distribution of α-planes and a null Maxwell field aligned with the null

congruence of shearfree geodesics.

2.2.1 Lorentzian geometry and α-planes

Let (M, g) be a 4-dimensional Lorentzian manifold equipped with a folia-

tion into integral curves of a non-vanishing null vector field p. We have the

following canonical objects

(i) the 1-form θ = g(p, ⋅)

(ii) the distribution p⊥ = {X ∈ Γ(TM)∶ g(X,p) = 0}

(iii) the distribution of screen spaces S ∶= p⊥/p.

Proposition 2.2.1 On each screen space Sx there are two canonical almost

complex structures Jx and −Jx.

Proof Because the metric g is nondegenerate, at each point X ∈ M, there

exists a null vector ` and orthonormal vectors e, f so that (p, `, e, f) forms

an admissible frame for the tangent space at the point x, i.e.

g(p, `) = g(e, e) = g(f, f) = 1, g(p, e) = g(`, e) = g(p, f) = g(p, e) = 0.
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On the screen space Sx the bilinear form

h ∶ Sx × Sx Ð→ R

defined by

h([e], ⋅) = g(e, ⋅), h([f], ⋅) = g(f, ⋅)

is a positive definite metric where [e], [f] are generators of Sx. We notice

that

h([e], [e]) = h([f], [f]) = 1.

On Sx the endomorphisms J1 and J2 defined by

J1([e]) = [f], J1([f]) = −[e],

and

J2([e]) = −[f], J2([f]) = [e]

are almost complex structures. It is now clear that J1 = −J2.

Choose one of the two almost complex structures on S. Now we consider

the complexification of the screen space, C ⊗ S. We also denote by J , the

complex linear extension of J on C⊗ S, that is,

J(X + iY ) = JX + iJY, X,Y ∈ Γ(S).

Therefore, C⊗ S splits into its eigenspaces S1,0 ⊕ S0,1 where

S1,0 = {X ∈ Γ(C⊗ S)∶JX = iX}, and S0,1 = {X ∈ Γ(C⊗ S)∶JX = −iX}.

Let

π∶C⊗ p⊥ Ð→ C⊗ S

be the canonical projection map. The subspaces P1,0 and P0,1 of C ⊗ p⊥

defined by

(2.9) P1,0 = π−1S1,0, and P0,1 = π−1S0,1
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are called α-planes and β-planes, respectively. Notice that changing the

orientation used in the definition of J results in interchanging the α-planes

and the β-planes. Clearly,

P1,0 ∩ P0,1 = linear spanC{p}, and P1,0 + P0,1 = C⊗ p⊥.

Definition 2.2.2 We say that the complexified Ricci tensor of g vanishes on

the α-planes P1,0, if Ric ∣P1,0 = 0, i.e.

Ric(X1,X2) = 0 for all X1,X2 ∈ Γ(P1,0).

Notice that vanishing of the complexified Ricci tensor on α-planes is

equivalent to its vanishing on β-planes. Hence the definition above does

not depend on the choice of J .

Definition 2.2.3 LetM be a 4-dimensional manifold equipped with a Lorentzian

metric g and a non-vanishing null vector field p. A complex frame (e1, e2, `, p)
is called adapted to (g, p), if e1 is a section of α-planes, e2 = ē1 (and, hence,

is a section of β-planes), and

g(e1, e2) = 1, g(`, `) = 0, g(`, p) = 1, g(`, e1) = g(`, e2) = 0.

Proposition 2.2.4 A 4-dimensional Lorentzian manifold (M, g) with a non-

vanishing null vector field p, possesses (locally) a complex adapted frame.

Proof Let ` be a null vector field such that g(`, p) = 1. Choose a unit vector

field ε1 ∈ p⊥ ∩ `⊥. Choose ε2 ∈ p⊥ such that πε2 = Jπ(ε1) and g(ε2, `) = 0.

Now, set

e1 =
1√
2
(ε1 − iε2), e2 =

1√
2
(ε1 + iε2).

It follows that the α-planes are spanned by (e1, p) and the β-planes are

spanned by (e2, p).
Now, vanishing of the Ricci curvature on α-planes is equivalent to

(i) R11 = Ric(e1, e1) = Ric(e2, e2) = 0
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(ii) R14 = Ric(e1, p) = Ric(e2, p) = 0

(iii) R44 = Ric(p, p) = 0.

Let the vector field p be shearfree for the metric g and (θ1, θ2, θ3, θ4)
be the dual coframe to (e1, e2, `, p) achieved in Proposition 2.2.4. Then the

Lorentzian metric g takes the form

g = 2(θ1θ2 + θ3θ4).

Below we cite a version of the celebrated Goldberg-Sachs theorem [21, 25, 20],

which is a useful tool for computing certain components of the Weyl tensor

of the Lorentzian metric g:

Cijkl = Rijkl +
1

6
R (gikglj − gilgkj) +

1

2
(gil Rkj −gik Rlj +gjk Rli −gjl Rki ),

where Rijkl is the Riemann curvature, Rkj is the Ricci curvature and R is the

scalar curvature. The following quantities are called Weyl scalars:

Ψ0 = C(k, e1, k, e1) = C4141, Ψ1 = C(k, `, k, e1) = C4341 .

2.2.2 Goldberg-Sachs Theorem

We now quote below a version of the Goldberg-Sachs theorem proved in [21]

in terms of vanishing of certain components of the Ricci curvature.

Theorem 2.2.5 ( Gover et al. [21, 25] ) Let (M, g) be a 4-dimensional

Lorentzian manifold and p be a shearfree vector field. Also assume that the

complexified Ricci curvature of g vanishes on the α-planes, i.e. R11 = R14 =
R44 = 0 with respect to an adapted coframe (θ1, θ2, θ3, θ4). Then

Ψ0 = Ψ1 = 0.

As the first application of the Goldberg-Sachs theorem, we are now able to

compute the function W defined in the shearfree metric (1.26).
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We introduce the coframe (θ1, θ2, θ3, θ4) with

θ1 = Pµ, θ2 = Pµ̄,(2.10a)

θ3 = Pλ, θ4 = P (dr +Wµ +Wµ̄ +Hλ).(2.10b)

Then, the metric (1.26) becomes

(2.11) g = 2(θ1θ2 + θ3θ4).

The dual frame (e1, e2, e3, e4) to (θ1, θ2, θ3, θ4) takes the form

e1 =
1

P
(∂ −W∂r), e2 =

1

P
(∂̄ −W∂r),(2.12a)

e3 =
1

P
(∂0 −H∂r), e4 =

1

P
∂r.(2.12b)

Therefore, the commutators of the frame fields (2.12) evaluate to

[e1, e2] = ( ∂̄P
P 2

−W Pr
P 2

) e1 + (−∂P
P 2

+W Pr
P 2

) e2 −
i

P
e3 + (− iH

P
+W2 −W 1) e4,

[e1, e3] = (∂0P

P 2
−H Pr

P 2
− α

P
) e1 −

β̄

P
e2 + (−∂P

P 2
+W Pr

P 2
− c

P
) e3

+ (−cH
P

+W3 −H1 −
αW

P
− β̄W

P
) e4,

[e1, e4] =
Pr
P 2
e1 + (−∂P

P 2
+W Pr

P 2
+ Wr

P
) e4,

[e2, e3] = −
β

P
e1 + (∂0P

P 2
−H Pr

P 2
− ᾱ

P
)e2 + (− ∂̄P

P 2
+W Pr

P 2
− c̄

P
)e3

+ (− c̄H
P

+W 3 −H2 −
ᾱW

P
− βW

P
)e4,

[e2, e4] =
Pr
P 2
e2 + (− ∂̄P

P 2
+W Pr

P 2
+ W r

P
)e4,

[e3, e4] =
Pr
P 2
e3 + (−∂0P

P 2
+H Pr

P 2
+ Hr

P
) e4,

where the subscripts 1, 2, 3 in the above expressions denote derivation with

respect to the corresponding frame field (2.12). For example, H1 means

1

P
(∂H −WHr).
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Now by using these commutator relations and Cartan’s structure equation

dθi + Γik ∧ θk = 0,

for the metric (2.11) we find the connection forms listed below:

Γ1
4 = ( i

2P
+ c1

14)θ1 + 1

2
(c3

23 + c4
24)θ3,(2.13a)

Γ1
1 = −c2

12θ
1 − c1

12θ
2 + 1

2
(c2

23 − c1
13 − c4

12)θ3 + i

2P
θ4(2.13b)

Γ4
4 = c4

34θ
3 + c3

34θ
4 − 1

2
c3

23θ
2 − 1

2
c3

13θ
1 + 1

2
c4

14θ
1 + 1

2
c4

24θ
2(2.13c)

Γ3
1 = ( i

2P
− c2

24)θ2 − 1

2
(c3

13 + c4
14)θ3(2.13d)

Γ4
1 = −c2

13θ
1 − 1

2
(c4

12 + c2
23 + c1

13)θ2 − c4
13θ

3 − 1

2
(c4

14 + c3
13)θ4(2.13e)

Γ1
3 =

1

2
(−c4

12 + c1
13 + c2

23)θ1 + c1
23θ

2 + c4
23θ

3 + 1

2
(c4

24 + c3
23)θ4(2.13f)

where ckmn are the structure constants defined by

[em, en] = ckmnek.

We also notice that (0.5) implies Γ1
2 = Γ11 = 0 and Γ3

4 = Γ33 = 0.

Remark 2.2.6 Note that, because of the choice of the coframe (2.10a), com-

plex conjugation of the connection forms interchanges the indices 1 and 2 and

keeps the indices 3, 4 unchanged, for example, Γ1
4 = Γ2

4.

In the following lemma we are able to compute the complex function W

introduced in the shearfree metric.

Lemma 2.2.7 Assume that the complexified Ricci tensor of the shearfree

metric (1.26), vanishes on the α-planes, i.e

R11 = R14 = R44 = 0,

with respect to the frame field (2.12). Then, the complex-valued function W

takes the following form

W = ix e−ir +y,(2.14)

where x, y are complex, r-independent functions.
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Proof Since the conditions R11 = R14 = R44 = 0 are satisfied and the null

vector field ∂r is a shearfree vector field, the Goldberg-Sachs theorem 2.2.5

implies that

C1414 = C1434 = 0.

Moreover, since the Weyl tensor is conformally invariant we may assume, for

simplicity, the conformal factor P = 1. We also note that

C1434 = R2
434 +

1

2
R14 .

To compute the component R2
434 of the Riemann curvature, we look at the

coefficient of the 2-form θ3 ∧ θ4 of the Γ2
4 as follows

dΓ2
4 + Γ2

k ∧ Γk4 = R2
4k` θ

k ∧ θ`, k < `,

which simplifies to

dΓ2
4 + Γ2

2 ∧ Γ2
4 + Γ2

4 ∧ Γ4
4 = R2

4k` θ
k ∧ θ`, k < `.

Substituting Γ2
4,Γ

2
2,Γ

4
4 into the above equation and taking the exterior deriva-

tive we see that

R2
434 = −

1

2
Wrr −

ic

4
+ i

4
Wr.

Moreover,

R14 = R1
114 +R2

124 +R3
134 .

To compute R1
114 we look at the coefficient of the 2-from θ1∧θ4 of the Cartan’s

structure equation for Γ1
1

dΓ1
1 + Γ1

3 ∧ Γ3
1 + Γ1

4 ∧ Γ4
1 = R1

1k` θ
k ∧ θ`, k < `.

After taking the exterior derivative, we get

R1
114 = −

3

4
ic4

14 −
i

4
c3

13.

The component R2
124 = 0, since the coefficient of the 2-form θ2 ∧ θ4 of the

Cartan’s structure equation for Γ2
1 is 0.
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In order to compute the component R3
134 we look at the coefficient of the

2-form θ3 ∧ θ4 of the structure equation

dΓ3
1 + Γ3

1 ∧ Γ1
1 + Γ3

3 ∧ Γ3
1 = R3

1k` θ
k ∧ θ`, k < `,

which reads

R3
134 =

1

2
(c3

13)4 +
1

2
(c4

14)4 −
i

4
c3

13 −
i

4
c4

14.

Thus, after substituting cijk’s to R14 and simplifying we get

R14 = +
ic

2
+ Wrr

2
− iWr.

Therefore, the condition C1434 = 0 is equivalent to the function W satisfying

the following equation

Wr − iWrr = 0.

Thus, the general solution of the second order differential equation with

constant coefficients is

W = ix e−ir +y

where xr = yr = 0.

2.2.3 Maxwell field aligned with a congruence

In order to present the main theorem in [25] we also need to introduce the

notion of what is called by physicists “Maxwell field aligned with the con-

gruence”.

Definition 2.2.8 Let (M, [(µ,λ)]) be a strictly pseudoconvex 3-dimensional

CR manifold and (µ′, λ′) be a pair from the class [(µ,λ)] with the transfor-

mations (1.7). The 2-form

F = π∗(λ′ ∧ µ′),

is called a null Maxwell field aligned with the congruence if it is closed, i.e.

dF = 0.
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Here π ∶M ×RÐ→M, is the natural projection.

Remark 2.2.9 We note that the 2-form λ′∧µ′ is a complex multiple of λ∧µ
due to the transformations (1.7).

The main result about embedding of strictly pseudoconvex 3-dimensional

manifolds among other results in [25], is the following

Theorem 2.2.10 (Hill, Lewandowski, Nurowski) [25] Let M be a suffi-

ciently smooth strictly pseudoconvex 3-dimensional CR manifold. It is locally

CR embeddable as a hypersurface in C2 if and only if:

1. it admits a lift to a spacetime whose complexified Ricci tensor vanishes

on the corresponding distribution of α-planes, and

2. it admits a non-trivial null Maxwell field aligned with the null congru-

ence of shearfree geodesics corresponding to the CR structure on M.

The proof of the theorem above consists of two parts. The first condition

actually gives a CR function φ such that dφ∧dφ̄ ≠ 0. The procedure of finding

a CR function, which we also use in the next chapter, has been known and

used by physicists since 1969 in the context of finding a solution of Maxwell

equations [12, 58].

A second CR function which is functionally independent from the first

one, arises from imposing the second condition of the theorem above on the

Lorentzian manifold.

In the next chapter we develop another approach based on a different

family of metrics which allows us to prove that vanishing of the complexified

Ricci tensor on the distribution of α-planes implies the embeddability of the

underlying CR manifold without the additional assumption on the existence

of the aligned Maxwell field.

In fact, we will show that vanishing of the complexified Ricci tensor on

the distribution of α-planes not only gives a CR function but also implies

the existence of a non-vanishing d-closed section of the canonical bundle
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which together with the CR function, by Theorem 2.1.6, implies that the CR

manifold is embeddable.

We also note that the Definition 2.1.4 shows that having a non-trivial

null Maxwell field aligned with the null congruence of shearfree geodesics is

equivalent to having a d-closed section of the canonical bundle of the CR

structure. Indeed, if

d(ψµ ∧ λ) = 0,

that is, ψµ ∧ λ is a nonzero d-closed section of the canonical bundle, then

F = π∗(ψµ ∧ λ)

is a Maxwell field aligned with the congruence and vise versa.

In order to define a class of metrics which we call the FRT metrics we

first need to recall the construction of the Fefferman metric for 3-dimensional

CR manifolds following [36] and [47].

2.3 Fefferman metric

The most famous approach to relate a given CR manifold to a Lorentzian

space is the Fefferman metric which was introduced by C. Fefferman in [17] for

real hypersurfaces in Cn on a circle bundle over M . Moreover, the Fefferman

construction was generalised for any CR structure in [8].

The construction in [8] is based on the canonical Cartan connection as-

sociated with the CR structure while in the constructions in [34] and also in

[16], one does not need to use a connection associated with the CR structure.

We also compute the Fefferman metric explicitly for general 3-dimensional

CR manifolds following the approach [29, 47], but without assuming that a

non-constant CR function exists. In order to do that, we present the following

important theorem.
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Theorem 2.3.1 (Cartan) [10, 29] Every strictly pseudoconvex CR mani-

fold (M, [(µ,λ)]) satisfying (1.5) uniquely defines an eight dimensional prin-

cipal bundle P over M , the following 1-forms on P

Ω0 = e2τ λ,

Ω1 = eτ+iϕ(µ + hλ),

Ω2 = dτ + idϕ +Aµ +Bµ̄ +Cλ,

Ω3 = e−τ+iϕ(dh +Dµ +Eµ̄ + Fλ),

Ω4 = e−2τ (dρ + i

2
(hdh̄ − h̄dh) +Hµ +Hµ̄ +Gλ),

where Ω4 is a real 1-form and π ∶ P →M is the natural projection and

Ω0 = e2τ π∗λ, Ω1 = eτ+iϕ(π∗µ + hπ∗λ).

Moreover, ρ is an arbitrary real function, the functions A, . . . ,H, which are

given by (2.16), (2.15), (2.20),(2.21), (2.17), (2.22), (2.24) and (2.23) respec-

tively. The forms satisfy the following equations:

dΩ0 = iΩ1 ∧Ω1 + (Ω2 +Ω2) ∧Ω0,

dΩ1 = Ω2 ∧Ω1 +Ω3 ∧Ω0,

dΩ2 = 2iΩ1 ∧Ω3 + iΩ1 ∧Ω3 +Ω4 ∧Ω0,

dΩ3 = Ω4 ∧Ω1 +Ω3 ∧Ω2 +RΩ1 ∧Ω0,

dΩ4 = iΩ3 ∧Ω3 +Ω4 ∧ (Ω2 +Ω2) + SΩ1 ∧Ω0 + S Ω1 ∧Ω0

where R given by (2.25) and S has the property that if R = 0, then S = 0.

Proof To obtain the functions A, . . . ,H we follow the computations in [29]

according to our setting (1.5). We note that the computations in [29] are

based on the assumption dµ = 0 but, here we consider the general case, where

the CR manifold is not necessarily embeddable in C2.
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We first look at the structure equation

dΩ0 − iΩ1 ∧Ω1 − (Ω2 +Ω2) ∧Ω0 = e2τ(2dτ ∧ λ + dλ) − i e2τ(µ ∧ µ̄ + h̄µ ∧ λ + hµ̄ ∧ λ)

− (2dτ + (A + B̄)µ + (B + Ā)µ̄ + (C + C̄)λ) ∧ e2τ λ

=2 e2τ dτ ∧ λ + i e2τ µ ∧ µ̄ + e2τ cµ ∧ θ + e2τ c̄µ̄ ∧ λ

− i e2τ(µ ∧ µ̄ + h̄µ ∧ λ + hµ̄ ∧ λ)

− e2τ(2dτ + (A + B̄)µ + (B + Ā)µ̄ + (C + C̄)λ) ∧ λ

= e2τ(c − ih̄ −A − B̄)µ ∧ λ + e2τ(c̄ + ih − Ā −B)µ̄ ∧ λ.

It follows

A = −B̄ + c − ih̄.

Furthermore,

dΩ1 −Ω2 ∧Ω1 −Ω3 ∧Ω0 = eτ+iϕ(dτ + idϕ) ∧ (µ + hλ) + eτ+iϕ(αµ ∧ λ + βµ̄ ∧ λ)

+ eτ+iϕ(dh ∧ λ + ihµ ∧ µ̄ + hcµ ∧ λ + hc̄µ̄ ∧ λ)

− eτ+iϕ[dτ + idϕ +Aµ +Bµ̄ +Cλ] ∧ [µ + hλ]

− eτ+iϕ(dh +Dµ +Eµ̄ + Fλ) ∧ λ

= eτ+iϕ(ih +B)µ ∧ µ̄ + eτ+iϕ(α + hc +C − hA −D)µ ∧ λ

+ eτ+iϕ(β + hc̄ − hB −E)µ̄ ∧ λ.

It follows

B = −ih(2.15)

and hence,

A = c − 2ih̄(2.16)

and

C −D = hA − hc − α = −2i∣h∣2 − α

and therefore,

E = β + hc̄ − hB = β + hc̄ + ih2.(2.17)
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Moreover, the structure equation for Ω2 is

dΩ2 + iΩ3 ∧Ω1 + 2iΩ3 ∧Ω1 −Ω4 ∧Ω0 = 0,

where Ω4 and Ω0 are real. This yields

d(Ω2 −Ω2) + 3iΩ3 ∧Ω1 + 3iΩ3 ∧Ω1 = 0.

We then have

d(Ω2 −Ω2) = (dA − dB̄) ∧ µ + (dB − dĀ) ∧ µ̄ + (dC − dC̄) ∧ λ

+ (A − B̄)(αµ ∧ λ + βµ̄ ∧ λ) + (B − Ā)(β̄µ ∧ λ

+ ᾱµ̄ ∧ λ) + (C − C̄)(iµ ∧ µ̄ + cµ ∧ λ + c̄µ̄ ∧ λ).

After expressing the exterior derivatives with respect to µ, µ̄, λ we get

d(Ω2 −Ω2) = (Aµµ +Aµ̄µ̄ +Aλλ − B̄µµ − B̄µ̄µ̄ − B̄λλ) ∧ µ

+ (Bµµ +Bµ̄µ̄ +Bλλ − Āµµ − Āµ̄µ̄ − Āλλ) ∧ µ̄

+ (Cµµ +Cµ̄µ̄ +Cλλ − C̄µµ − C̄µ̄µ̄ − C̄λλ) ∧ λ

+ (A − B̄)(αµ ∧ λ + βµ̄ ∧ λ) + (B − Ā)(β̄µ ∧ λ

+ ᾱµ̄ ∧ λ) + (C − C̄)(iµ ∧ µ̄ + cµ ∧ λ + c̄µ̄ ∧ λ),

and also

3iΩ3 ∧Ω1 + 3iΩ3 ∧Ω1 = 3i(dh +Dµ +Eµ̄ + Fλ) ∧ (µ̄ + h̄λ)

+ 3i(dh̄ + D̄µ̄ + Ēµ + F̄ λ) ∧ (µ + hλ)

= 3i(hµµ + hµ̄µ̄ + hλλ +Dµ +Eµ̄ + Fλ) ∧ (µ̄ + h̄λ)

+ 3i(h̄µµ + h̄µ̄µ̄ + h̄λλ + D̄µ̄ + Ēµ + F̄ λ) ∧ (µ + hλ).

We will examine the µ ∧ µ̄ and λ ∧ µ components of

d(Ω2 −Ω2) + 3iΩ3 ∧Ω1 + 3iΩ3 ∧Ω1 = 0.

We then get

−Aµ̄ + B̄µ̄ +Bµ − Āµ + i(C − C̄) + 3ihµ + 3iD − 3ih̄µ̄ − 3iD̄ = 0,(2.18)
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and also

Aλ − B̄λ −Cµ + C̄µ − α(A − B̄) − β̄(B − Ā) − c(C − C̄)(2.19)

− 3ih̄hµ − h̄D − 3ihh̄µ + 3ih̄λ − 3ihĒ + 3iF̄ = 0.

Substituting the functions A,B,E into (2.18) gives

−cµ̄ − c̄µ + i(C − C̄) + 3iD − 3iD̄ = 0.

Using C −D = −2i∣h∣2 − α, after simplifications we get

4i(C − C̄) = cµ̄ + c̄µ + 12∣h∣2 − 3i(α − ᾱ).

and consequently,

C = ρ − i
cµ̄ + c̄µ

8
− 3

2
i∣h∣2 − 3

4
α,(2.20)

where ρ is an arbitrary real function. Hence, the function D is of the form

D = C + 2i∣h∣2 + α = ρ − i
cµ̄ + c̄µ

8
+ 1

2
i∣h∣2 + 1

4
α.(2.21)

By straightforward computations from (2.19) we have

F̄ = 1

3i
( − cλ + 2ih̄λ + ih̄λ + ρµ − i

cµ̄µ + c̄µµ
8

− i
3

2
(hh̄)µ −

3

4
αµ

− ρµ − i
cµ̄µ + c̄µµ

8
− i

3

2
(hh̄)µ +

3

4
αµ + α(c − 3ih̄)

+ β̄(−3ih − c̄) − ic
cµ̄ + c̄µ

4
− 3ci∣h∣2 − 3

4
c(α + ᾱ)

+ 3ih̄ρ + 3h̄
cµ̄ + c̄µ

8
− 3

2
ih̄∣h∣2 + 3

4
ih̄α + 3i(h̄h)µ − 3ih̄λ

+ 3ihβ̄ + 3i∣h∣2c + 3h̄∣h∣2).

After simplification we get the following expression for F

F = i

3
( − c̄λ + i

c̄µµ̄ + cµ̄µ̄
4

− 3

4
ᾱµ̄ +

3

4
αµ̄ + ᾱc̄ + 3iᾱh − cβ + ic̄

cµ̄ + c̄µ
4

(2.22)

− 3

4
c̄(α + ᾱ) − 3ihρ + 3h

cµ̄ + c̄µ
8

+ 3

2
h∣h∣2 − 3

4
ihᾱ),
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which is consistent with [29] when α = β = 0 and cµ̄ = c̄µ. Notice that in our

case c̄µ − cµ̄ = i(α + ᾱ), i.e. it does not vanish in general.

To determine the function H appearing in Ω4 we first notice that

d(Ω2 +Ω2) = iΩ1Ω3 − iΩ1Ω3 + 2Ω4Ω0.

Therefore,

d(Ω2 +Ω2) = dc ∧ µ − idh̄ ∧ µ + (c − ih̄)(αµ ∧ λ + βµ̄ ∧ λ) + dc̄µ̄ + idh ∧ µ̄

+ (c̄ + ih)(ᾱµ̄ ∧ λ + β̄µ ∧ λ) + 2dρ ∧ λ − 3

4
dα ∧ λ − 3

4
dᾱ ∧ λ

+ i(2ρ − 3

4
α − 3

4
ᾱ)µ ∧ µ̄ + c(2ρ − 3

4
α − 3

4
ᾱ)µ ∧ λ

+ c̄(2ρ − 3

4
α − 3

4
ᾱ)µ̄ ∧ λ.

On the other hand,

iΩ1 ∧Ω3 − iΩ1 ∧Ω3 + 2Ω4 ∧Ω0 = iµ ∧ dh̄ + iD̄µ ∧ µ̄ + iF̄ µ ∧ λ + ihD̄λ ∧ µ̄

+ ihĒλ ∧ µ − iµ̄ ∧ dh − iDµ̄ ∧ µ − iFµ̄ ∧ λ

− ih̄Dλ ∧ µ − ih̄Eλ ∧ µ̄ + 2dρ ∧ λ + 2Hµ ∧ λ

+ 2Hµ̄ ∧ λ.

Looking at the coefficient of the term µ∧λ of the d(Ω2+Ω2) gives the following

expression for H

H = 1

2
( − cλ + α(c − ih̄) + β̄(c̄ + ih) − 3

4
αµ −

3

4
ᾱµ(2.23)

+ c(2ρ − 3

4
α − 3

4
ᾱ) − iF̄ + ihĒ − ih̄D).

It only remains to determine G. To do that we look at the coefficient of

the term λ ∧ µ of dΩ3. Indeed, on one hand,

dΩ3 = d( e−τ+iϕ(dh +Dµ +Eµ̄ + Fλ))

= e−τ+iϕ(−dτ + idϕ) ∧ (dh +Dµ +Eµ̄ + Fλ)

+ e−τ+iϕ (dD ∧ µ +Dαµ ∧ λ +Dβµ̄ ∧ λ + dE ∧ µ̄

+Eᾱµ̄ ∧ λ +Eβ̄µ ∧ λ + dF ∧ λ + iFµ ∧ µ̄

+ cFµ ∧ λ + c̄F µ̄ ∧ λ).



2.3. FEFFERMAN METRIC 90

On the other hand,

dΩ3 = Ω4 ∧Ω1 +Ω3 ∧Ω2 +RΩ1 ∧Ω0

= e−τ+iϕ (dρ + i

2
(hdh̄ − h̄dh) +Hµ +Hµ̄ +Gλ) ∧ (µ + hλ)

+ e−τ+iϕ(−dτ + idϕ) ∧ (dh +Dµ +Eµ̄ + Fλ)

+ e−τ+iϕ(dh +Dµ +Eµ̄ + Fλ) ∧ (Āµ̄ + B̄µ + C̄λ)

+R eτ−iϕ(µ̄ + h̄λ) e2τ λ.

Comparing the two above expressions for dΩ3 and considering the coefficient

of λ ∧ µ determines G, as follows

G = − i

2
hh̄λ +

i

2
h2h̄µ +

i

2
h̄hλ −

i

2
∣h∣2hµ +Hh + hµC̄ − hλB̄ +DC̄(2.24)

− FB̄ +Dλ −Dα −Eβ̄ − Fµ −CF.

To obtain R we look at the coefficient of the 2-form µ̄ ∧ λ of dΩ3. We

then have

R = e−4τ+2iϕ (Dβ −Eλ +Eα + Fµ̄ + c̄F − i

2
h2h̄µ̄ +

i

2
∣h∣2hµ̄(2.25)

−Hh − C̄hµ̄ + Āhλ −EC̄ + FĀ).

A straightforward computation shows

Ω2 −Ω2 =2idϕ + (c − 3ih̄)µ − (c̄ + 3ih)µ̄

+ (
cµ̄ + c̄µ

4i
− 3i∣h∣2 − 3(α − ᾱ)

4
)λ.

Now we are in the position to define the Fefferman metric as follows

Definition 2.3.2 The bilinear symmetric tensor

gF = Ω1Ω1 +
1

3i
Ω0(Ω2 −Ω2)(2.26)

= µµ̄ + λ(2

3
dϕ − i

3
cµ + i

3
c̄µ̄ − (∂c̄ + ∂̄c

12
− i(α − ᾱ)

4
)λ)

defined on the circle bundle M = D1,0/R+ where (µ,λ) is a distinguished

coframe and M ∋ m∣p = e−τ−iϕ ∂∣p ↦ (p,ϕ) is a local trivialisation and ϕ ∈
[0,2π) is called Fefferman metric.
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We again note that we kept the notations µ, µ̄, λ for their pull-backs under

the circle bundle projection.

It is well-known that the Fefferman metric is CR invariant which precisely

means that a change of the distinguished coframe (µ, µ̄, λ) causes only a

conformal change of gF by the factor e2τ .

Lemma 2.3.3 For the choice of (µ′, λ′) defined by (1.8), where f ∶= eτ+iϕ,

the following statement for new c is satisfied

∂′c̄′ + ∂̄′c′
12

λ′ = 1

12
[ − c̄∂ log f̄ − 4∣∂̄ log f ∣2 − (∂ log f̄)(∂̄ log f̄) + ∂̄c

+ 2∂̄∂ log f − 2i∂0 log f + ∂̄∂ log f̄ − i∂0 log f̄ − c∂̄ log f

− (∂̄ log f)(∂ log f) + ∂c̄ + 2∂̄∂ log f̄ + ∂̄∂ log f]λ,

Proof The transformations (1.7) and Proposition 1.2.11 imply that

∂′c̄′ + ∂̄′c′
12

λ′ = 1

12
[ 1

f
∂ ( 1

f̄
(c̄ + 2ih + ∂̄ log f̄)) + 1

f̄
∂̄ ( 1

f
(c − 2ih̄ + ∂ log f)) ]λ′

= 1

12
[ − c̄∂ log f̄ − 2ih∂ log f̄ − (∂ log f̄)(∂̄ log f̄) + ∂̄c + 2i∂h + ∂∂̄ log f̄

− c∂̄ log f + 2ih̄∂̄ log f − (∂̄ log f)(∂ log f) + ∂c̄ − 2i∂̄h̄ + ∂̄∂ log f]λ

= 1

12
[ − c̄∂ log f̄ − 2∣∂̄ log f ∣2 − (∂ log f̄)(∂̄ log f̄) + ∂̄c + 2∂∂̄ log f

+ ∂∂̄ log f̄ − c∂̄ log f − 2∣∂̄ log f ∣2 − (∂̄ log f)(∂ log f) + ∂c̄ + 2∂̄∂ log f̄

+ ∂̄∂ log f]λ

= 1

12
[ − c̄∂ log f̄ − 4∣∂̄ log f ∣2 − (∂ log f̄)(∂̄ log f̄) + ∂̄c + 2∂̄∂ log f

− 2i∂0 log f + ∂̄∂ log f̄ − i∂0 log f̄ − c∂̄ log f − (∂̄ log f)(∂ log f)

+ ∂c̄ + 2∂̄∂ log f̄ + ∂̄∂ log f]λ.

Moreover,
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Lemma 2.3.4 The following statement holds.

i(α′ − ᾱ′)
4

λ′ = i

4
(α − 2∂0 log f − i(∂̄ log f)(∂ log f) − i∂̄∂ log f − ic∂̄ log f − ᾱ

+ ∂0 log f̄ − i(∂ log f̄)(∂̄ log f̄) − i∂̄∂ log f̄ − ic̄∂ log f̄)λ.

Proof The transformations (1.7) and Proposition 1.2.11 imply that

i(α′ − ᾱ′)
4

λ′ = i

4
(α − ∂0 log f + h∂ log f + ∂h + hc − ᾱ + ∂0 log f̄ − h̄∂̄ log f̄ − ∂̄h̄ − h̄c̄)λ

= i

4
(α − ∂0 log f − i(∂̄ log f)(∂ log f) − i∂∂̄ log f − ic∂̄ log f − ᾱ + ∂0 log f̄

− i(∂ log f̄)(∂̄ log f̄) − i∂̄∂ log f̄ − ic̄∂ log f̄)λ

= i

4
(α − 2∂0 log f − i(∂̄ log f)(∂ log f) − i∂̄∂ log f − ic∂̄ log f − ᾱ + ∂0 log f̄

− i(∂ log f̄)(∂̄ log f̄) − i∂̄∂ log f̄ − ic̄∂ log f̄)λ.

Proposition 2.3.5 The Fefferman metric is CR invariant.

Proof Let g′F be the Fefferman metric corresponding to the choice (µ′, λ′),
that is,

g′F = µ′µ̄′ + λ′ (2

3
dρ′ − i

3
c′µ′ + i

3
c̄′µ̄′ − (∂

′c̄′ + ∂̄′c′
12

− i(α′ − ᾱ′)
4

)λ′) .

Using (1.8) and Lemmata 2.3.3 and 2.3.4 we get

g′F = ∣f ∣2(µµ̄ + h̄µλ + hλµ + ∣h∣2λλ)

+ ∣f ∣2λ(2

3
dρ′ − i

3
cµ − i

3
chλ − 2

3
h̄µ − 2

3
∣h∣2λ − i

3
(∂ log f)µ − i

3
h(∂ log f)λ

+ i

3
c̄µ̄ + i

3
c̄h̄λ − 2

3
hµ̄ − 2

3
∣h∣2λ + i

3
(∂̄ log f̄)µ̄ + i

3
h̄(∂̄ log f̄)λ)

+ [ 1

12
c̄∂ log f̄ + 1

3
∣∂̄ log f ∣2 + 1

12
(∂ log f̄)(∂̄ log f̄)

− 1

12
∂̄c − 1

6
∂̄∂ log f + i

6
∂0 log f − 1

12
∂̄∂ log f̄ + i

12
∂0 log f̄ + 1

12
c∂̄ log f

+ 1

12
(∂̄ log f)(∂ log f) − 1

12
∂c̄ − 1

6
∂̄∂ log f̄ − 1

12
∂̄∂ log f + i

4
α − i

2
∂0 log f

+ 1

4
(∂̄ log f)(∂ log f) + 1

4
∂̄∂ log f + 1

4
c∂̄ log f − i

4
ᾱ + i

4
∂0 log f̄

+ 1

4
(∂ log f̄)(∂̄ log f̄) + 1

4
∂̄∂ log f̄ + 1

4
c̄∂ log f̄]λ).
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We notice that ∣h∣2 = ∣∂̄ log f ∣2 and then by collecting the like terms we achieve

g′F = ∣f ∣2gF = e2τ gF ,

where

gF = µµ̄ + λ(2

3
dρ − i

3
cµ + i

3
c̄µ̄ − (∂c̄ + ∂̄c

12
− i(α − ᾱ)

4
)λ)

and, moreover,

ρ = ϕ + ρ′.

The Fefferman metric possesses some interesting properties. The Fefferman

metric in never globally Einstein. For computational reasons we will give the

proof in the next chapter (see [69, 34]).



Chapter 3

FRT metrics and the

embedding of CR manifolds

In this chapter which is inspired by [37] and [25], we introduce a CR invariant

class of Lorentzian metrics on a circle bundle over a 3-dimensional CR man-

ifold, which we call FRT metrics where FRT stands for Fefferman Robinson

Trautman.

These metrics generalise the Fefferman metric but allow for more control

of the Ricci curvature. Our main result is a criterion for the local embed-

dability of 3-dimensional CR manifolds in terms of the Ricci curvature of the

FRT metrics.

This chapter is a joint work which has been already published online. See

the reference [61] for more details.

3.1 Fefferman Robinson Trautman metrics

We recall from the Definition 2.26, for a given CR manifold (M,D,J) the

Fefferman metric is defined on the circle bundle M = D1,0/R+. Denote by

M̃ the natural lift of M to a line bundle. It will be convenient in the

computations below to rescale the coordinate ρ on M̃ to r = 2ρ
3 . Then, the

94
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change of the coframe (λ,µ) induces the change

(3.1) r′ = r − 2

3
ϕ

of the trivialisation of M̃ where ϕ ∈ [0,2π).
Denote the quotient bundle of the (rescaled) line bundle M̃ mod 2π by

M 3
2 . Since the Fefferman metric is invariant with respect to the principle

R-bundle action it projects to any S1-bundle with arbitrary period. In par-

ticular, it is well-defined on M 3
2 .

Definition 3.1.1 Let (M,D,J) be a CR structure and M 3
2 as above. For

any choice of a distinguished coframe (µ,λ) and the induced trivialisation of

M 3
2 we define the family of FRT metrics on M 3

2 by

(3.2) g = 2P 2 [µµ̄ + λ (dr +Wµ +Wµ̄ +Hλ)]

where

W = ix e−ir − i

3
c.

Here P ≠ 0,H are real-valued functions on M 3
2 and x is a complex-valued

function on M .

We note that the complex function W defined as above is consistent with

(2.2.7), and the vector field ∂r is a shearfree vector field.

The family of FRT metrics has the following important property

Theorem 3.1.2 The family of FRT metrics is CR invariant.

Proof Under the frame change (1.8) and the induced change of the triviali-

sation (3.1) the FRT metric changes as follows. Let g′

g′ = 2P ′2 [µ′µ̄′ + λ′ (dr′ + (ix′ e−ir′ − i

3
c′)µ′ + (−ix̄′ eir′ + i

3
c̄′)µ̄′ +H ′λ′)]

be the representative of FRT metrics corresponding to the choice (µ′, λ′).
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Therefore, substituting the transformations (1.8) into g′ implies that

g′ = 2∣f ∣2P ′2[µµ̄ + h̄µλ + hµ̄λ + ∣h∣2λ2

+ λ(dr − 2

3
dϕ + f (ix′ ei 2

3
ϕ e−ir − i

3f
(c − 2ih̄ + ∂ log f))µ

+ f̄ (−ix̄′ e−i 2
3
ϕ eir + i

3f̄
(c̄ + 2ih + ∂̄ log f̄)) µ̄

+ (fh(ix′ ei 2
3
ϕ e−ir − i

3
c′) + f̄ h̄(−ix̄′ e−i 2

3
ϕ eir + i

3
c̄′) + ∣f ∣2H ′)λ)]

= 2P 2[µµ̄ + λ(dr + (ix e−ir − i

3
c)µ + (1

3
h̄ − i

3
∂ log f − 2

3
∂ϕ)µ

+ (−ix̄ eir + i

3
c̄)µ̄ + (1

3
h + ∂̄ log f̄ − 2

3
∂̄ϕ)µ̄ +Hλ)]

= 2P 2[µµ̄ + λ(dr + (ix e−ir − i

3
c)µ + (−ix̄ eir + i

3
c̄)µ̄ +Hλ)],

where

f = eτ+iϕ, P = eτ P ′, x = eτ+i 5
3
ϕ x′,(3.3a)

H = e2τ H ′ + ∣h∣2 + eτ+iϕ h(ix′ e−ir′ − i

3
c′)(3.3b)

+ eτ−iϕ h̄(−ix̄′ eir′ + i

3
c̄′) − 2

3
∂0ϕ.

In the proposition below we compute the Ricci components of the FRT

metric.

Proposition 3.1.3 Let g be an FRT metric (3.2) on M 3
2 associated with a

CR-manifold M that admits a non-constant CR function ζ. Let (µ = dζ, λ) be

a coframe for M and Rik the components of the Ricci curvature with respect

to an adapted frame. Then

(i) R44 = 0 is equivalent to

(3.4) P = a

cos( r+s2 )
,

where a, s are arbitrary r-independent real functions.
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(ii) R24 = R14 = 0 is equivalent to

∂ log a2 + i∂s − 2x eis = −2c

3
.(3.5)

(iii) R22 = 0 if and only if the equation

(3.6) ∂t + t(c − t) = 0

is satisfied, where

t = c + ∂ log a2 − x eis .(3.7)

For an alternate coframe (µ′, λ′) the function t changes to

(3.8) t′ = e−τ−iϕ(t − ih̄).

Proof To verify that the condition R44 = 0 is equivalent to the function P

having the form (3.4), we first notice that R44 = 2 R1
414. We now consider the

Cartan’s structure equation for the 1-form Γ1
4

dΓ1
4 + Γ1

k ∧ Γk4 = R1
4k` θ

k ∧ θ`, k < `,

which simplifies to

dΓ1
4 + Γ1

1 ∧ Γ1
4 + Γ1

4 ∧ Γ4
4 = R1

4k` θ
k ∧ θ`, k < `(3.9)

since Γ1
2 = Γ3

4 = 0. Substituting the 1-forms Γ1
4,Γ

1
1,Γ

4
4 given by (2.13a),(2.13b),(2.13c)

into (3.9), we have

dΓ1
4 = d(

i

2P
+ c1

14) ∧ θ1 − ( i

2P
+ c1

14)c1
ijθ

i ∧ θj

+ 1

2
d(c3

23 + c4
24) ∧ θ3 − 1

2
(c3

23 + c4
24)c3

ijθ
i ∧ θj, i < j.

The coefficient of the 2-form θ1 ∧ θ4 in dΓ1
4 and Γ1

1 ∧ Γ1
4 + Γ1

4 ∧ Γ4
4 is

i

2

Pr
P 3

− i

2

Pr
P 3

− Prr
P 3

+ 2P 2
r

P 4
− P

2
r

P 4
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and

1

4P 2
− i

2

Pr
P 3

+ i

2

Pr
P 3

+ P
2
r

P 4

respectively. Therefore, R1
414 = 0 implies

(3.10) − 4PPrr + 8P 2
r + P 2 = 0.

We solve the ODE (3.10) using the substitution

P = e∫ udr .

It follows that

Pr = u e∫ udr, Prr = (u′ + u2) e∫ udr

so that substituting Pr and Prr into the ODE (3.10), it takes the form

−4(u′ + u2) e2 ∫ udr +8u2 e2 ∫ udr + e2 ∫ udr = (−4u′ + 4u2 + 1) e2 ∫ udr = 0.

It also follows that

u′ = du
dr

= 1 + 4u2

4
,

which implies

∫
4

1 + 4u2
du = 2 arctan 2u = r + s

or equivalently,

u = 1

2
tan

r + s
2

.

By integrating both sides of the last equality, we see that

∫ udr = 1

2 ∫
tan

r + s
2

dr = − ln cos
r + s

2
+C

is satisfied and consequently,

P = e∫ udr = a

cos r+s2

,

where a = eC .

To show that R14 = 0 is equivalent to (3.5), we first note that

R14 = R1
114 +R2

124 +R3
134 .
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To compute R1
114 we look at the coefficient of the 2-form θ1∧θ4 of the Cartan’s

structure equation for Γ1
1

dΓ1
1 + Γ1

3 ∧ Γ3
1 + Γ1

4 ∧ Γ4
1 = R1

1k` θ
k ∧ θ`, k < `.

After taking the exterior derivative, we get

R1
114 = (c2

12)4 + c2
12c

1
14 +

i

2
(1

p
)1 −

3i

4P
c4

14 −
i

4P
c3

13 −
1

2
c1

14c
4
14 −

1

2
c1

14c
3
13.

The component R2
124 = 0, since the coefficient of the 2-form θ2 ∧ θ4 of the

Cartan’s structure equation for Γ2
1 is 0. Indeed, the left hand side of the

following equation vanishes

dΓ2
1 + Γ2

1 ∧ Γ1
1 + Γ2

2 ∧ Γ2
1 + Γ2

3 ∧ Γ3
1 + Γ2

4 ∧ Γ4
1 = R2

1k` θ
k ∧ θ`, k < `,

due to Γ2
1 = 0 and also

Γ2
4 = g12Γ2

4 = g1kΓ
k
4 = Γ14 = −Γ41 = −g4kΓ

k
1 = −g43Γ3

1 = −Γ3
1

and Γ4
1 = −Γ2

3. In order to compute the component R3
134 we study the coeffi-

cient of the 2-form θ3 ∧ θ4 of the structure equation

dΓ3
1 + Γ3

1 ∧ Γ1
1 + Γ3

3 ∧ Γ3
1 = R3

1k` θ
k ∧ θ`, k < `,

which reads

R3
134 =

1

2
(c3

13)4 +
1

2
(c4

14)4 −
i

4P
c3

13 −
i

4P
c4

14.

Thus,

R14 = (c2
12)4 + c2

12c
1
14 +

i

2
(1

p
)1 −

i

P
c4

14 −
i

2P
c3

13

− 1

2
c1

14c
4
14 −

1

2
c1

14c
3
13 +

1

2
(c3

13)4 +
1

2
(c4

14)4.

After substituting cijk to R14 and simplifying, we get

R14 =
1

P
(2∂r∂(

1

P
) −Wr∂r(

1

P
) − 2W∂rr(

1

P
) + ic

2P
− c∂r(

1

P
) + Wrr

2P

− i∂( 1

P
) + iW∂r(

1

P
) − i

Wr

P
).
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Taking the derivatives with respect to the variable r and using the following

identities

cos
r + s

2
= ei r+s

2 + e−i r+s
2

2
, sin

r + s
2

= ei r+s
2 − e−i r+s

2

2i
(3.11)

we see that , after lengthy but straightforward computations and simplifica-

tions, vanishing of R14 is equivalent to (3.5).

To show that R11 = 0 is equivalent to (3.6), we initially note that

R11 = 2 R1413 = 2 R2
413 .

In order to compute the Ricci component R22, we examine the coefficient of

the 2-form θ2 ∧ θ3 of the following structure equation

dΓ2
4 + Γ2

2 ∧ Γ2
4 + Γ2

4 ∧ Γ4
4 = R2

4k` θ
k ∧ θ`, k < `,

since Γ2
1 = Γ3

4 = 0. After taking the exterior derivative of Γ2
4, the coefficient of

the θ1 ∧ θ3 in dΓ2
4 is as follows

i

2P
c2

13 − c2
24c

2
13 +

1

2
(c3

13)1 −
1

2
(c3

13)2 + 1

2
(c4

14)1 −
1

2
c4

14c
3
13.

Also the coefficient of the θ1 ∧ θ3 in Γ2
2 ∧Γ2

4 +Γ2
4 ∧Γ4

4 is in the following form

−1

2
c2

21c
3
13 −

1

2
c2

21c
4
14 +

1

4
(c3

13)2 − 1

4
(c4

14)2.

Therefore,

R11 =
i

P
c2

13 − 2c2
24c

2
13 + (c3

13)1 −
1

2
(c3

13)2 + (c4
14)1 − c4

14c
3
13

+ c2
12c

3
13 + c2

12c
4
14 −

1

2
(c4

14)2.

Substituting cijk in R11, it gives

R11 =
1

P
( − i

β̄

P
− 2β̄∂r(

1

P
) + 2∂∂( 1

P
) − 4W∂r∂(

1

P
) − 2(∂W )∂r(

1

P
)

+ 2WWr∂r(
1

P
) + 2W 2∂r∂r(

1

P
) − ∂c

P
− c2

2P
+ ∂Wr

P
− WWrr

P

+ cWr

P
− (Wr)2

2P
).
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By taking the derivatives and using (3.11), we see vanishing of R11 implies

that

−iβ̄ + ∂t + t(c − t) = 0(3.12)

is satisfied where t is given by (3.8). Since a CR function exists one can

choose µ = dζ, where ζ is a CR function. Then it follows that β = 0 and

consequently,

∂t + t(c − t) = 0.

To verify (3.8), we first notice that

P ′ = e−τ P = a e−τ

cos( r+s2 )
= a′

cos( r′+s′2 )

for all r and r′ = r − 2
3ϕ. It follows a′ = e−τ a and s′ = 2

3ϕ + s. Therefore,

t′ = c′ + ∂′ log a′2 − x′ eis′

= e−τ−iϕ (c − 2ih̄ + ∂(τ + iϕ)) + e−τ−iϕ(∂ log a2 − 2∂τ)

− e−τ−
5i
3
ϕ x eis+ 2i

3
ϕ

= e−τ−iϕ (c − 2ih̄ + ∂(τ + iϕ) + ∂ log a2 − ∂(τ + iϕ) + ih̄ − x eis)

= e−τ−iϕ (t − ih̄) .

Now, we are in the position to show that there is no representative in the

family of Fefferman metric, which is Einstein.

Proposition 3.1.4 Let (M, [(µ,λ)]) be a strictly pseudoconvex CR manifold

satisfying (1.5). For the choice of pairs (µ,λ), the Fefferman metric defined

by

gF = P 2 (µµ̄ + λ(2

3
dρ − i

3
cµ + i

3
c̄µ̄ − (∂c̄ + ∂̄c

12
− i(α − ᾱ)

4
)λ))

is never globally Einstein.

Proof Set

θ1 = Pµ, θ2 = Pµ̄, θ3 = Pλ,

θ4 = (dr − i

3
cµ + i

3
c̄µ̄ − (∂c̄ + ∂̄c

12
− i(α − ᾱ)

4
)λ) ,
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where r = 2
3ρ. From (3.4), it follows that R44 = 0 implies that the conformal

factor P , takes the following form

P = a

cos( r+s2 )
,

where a and s are real-valued functions and and sr = 0. We notice that the

function P has global singularities.

3.2 FRT metrics and embedding of the CR

manifold

We are now ready to prove the main theorem of this chapter.

Theorem 3.2.1 A strictly pseudoconvex 3-dimensional CR manifold (M,D,J)
is (locally) embeddable if and only if there exists an associated circle bundle

M 3
2 with an FRT metric g whose complexified Ricci tensor vanishes on the

distribution of α-planes.

Proof Let (M, [(µ,λ)]) be a CR manifold with the representative (µ,λ) and

let g be an FRT metric defined by (3.2) onM 3
2 for which R22 = R24 = R44 = 0,

where the Ricci components are computed with respect to the frame field

(e1, e2, e3, e4) defined by (2.12). We then consider the connection 1-form

(3.13) Γ24 = Γ1
4 = δθ1 + γθ3

from (2.13a) where

δ = i

2P
+ Pr
P 2
, γ = − ∂̄P

P 2
+ WPr

P 2
− c̄

2P
+ W r

P
.

Clearly, δ ≠ 0 and therefore, the form Γ24 ≠ 0. Moreover,

Γ24 ∧ Γ24 ≠ 0,

since

Γ24 ∧ Γ24 = ∣σ∣2 θ1 ∧ θ2 mod{θ3}.
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On the other hand, the conditions of the Goldberg-Sachs theorem 2.2.5 with

respect to the shearfree vector field ∂r are satisfied and therefore,

Ψ0 = C4141 = R1414 = 0, Ψ1 = C4341 =
1

2
(R4341 +R1421) = 0.

It follows

C4242 = C4141 = 0, C4342 = C4341 = 0,

and furthermore, using the symmetries of the Riemann curvature

Rijk` = Rk`ij, Rijk` = −Rjik` = −Rij`k

it yields

(3.14) R2424 = 0, R2434 +R2412 = 0.

Since

R44 = 2R2414, R22 = 2R2423, R24 = R2412 −R2434,

where Rij = Rk
ikj and Rijk` = gimRm

jk`, this shows that the conditions

R44 = R22 = R24 = 0

are equivalent to

(3.15) R2414 = R2423 = R2412 −R2434 = 0.

Combining (3.14) and (3.15) yields

(3.16) R2412 = R2424 = R2414 = R2423 = R2434 = 0.

Therefore, Cartan’s structure equation (3.9) for the connection 1-form Γ24 =
Γ1

4 becomes

dΓ24 − (Γ12 + Γ34) ∧ Γ24 = R24k`θ
k ∧ θ` = R2413θ

1 ∧ θ3.

Wedging the equation above with Γ24 and taking into account that Γ24 is a

linear combination of θ1 and θ3, given by (3.13), we conclude that

dΓ24 ∧ Γ24 = 0.
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Now, we can apply Lemma 2.1.1 for the 1-form Γ24 and deduce that locally

there exists complex functions h ≠ 0 and ζ such that

Γ24 = hdζ with dζ ∧ dζ̄ ≠ 0.

Wedging the equation

hdζ = Γ24 = P (σµ + ρλ)

by λ ∧ µ shows that

dζ ∧ λ ∧ µ = 0.

Restricting the function ζ to the CR manifold M , considered as a section

{r = 0} of M 3
2 , gives a CR function there.

Now we may assume that µ = dζ. Since vanishing of the Ricci tensor

on the α-planes does not depend on the choice of an adapted frame, the

conditions R44 = R24 = R22 = 0 are still satisfied.

We consider the two cases t ≡ 0 and t /≡ 0, where t is defined by (3.7). In

the first case it follows, from the equation (3.5), that

4

3
c = −∂ log a2 + i∂s,

and hence,

∂ log(a 3
2 e−

3
4

is) = −c.

Therefore, equation (2.5) has a solution ψ = a
3
2 e

3
4

is and, by Proposition

2.1.5, the canonical bundle has a nowhere vanishing d-closed section. Now,

by Theorem 2.1.6, there exists a second CR function that is functionally

independent from ζ and therefore the CR manifold is embeddable.

In the second case, if t is not identically 0, we replace the complex coframe

1-form µ by another exact form µ′ as follows. Consider

(3.17) ω = µ + it̄λ,

and since R22 = 0 we have

dω ∧ ω = i(∂̄t̄ + t̄(c̄ − t̄ ))µ ∧ µ̄ ∧ λ = 0.
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Also ω ∧ ω̄ ≠ 0 holds because

ω ∧ ω̄ = µ ∧ µ̄ − itµ ∧ λ − it̄µ̄ ∧ λ.

Thus, the 1-form ω satisfies the conditions of Lemma 2.1.1. Consequently,

there exists complex-valued functions b ≠ 0 and η such that

(3.18) ω = µ + it̄λ = b dη.

Clearly,

dη ∧ dη̄ = 1

∣b∣2
ω ∧ ω̄ ≠ 0.

It follows from the definition of η and ω that dη is a linear combination of µ

and λ, and hence,

dη ∧ λ ∧ µ = 0,

meaning that , η is a CR function. Now we switch to the coframe (µ′ = dη, λ′)
for which, because of (3.8), t′ ≡ 0 everywhere. This reduces the second case

to the first case and proves the embeddability of M .

For the proof of the converse statement we assume that the CR structure

M with adapted coframe (µ = dζ, λ) is embeddable. Then, the canonical bun-

dle contains a nonzero d-closed section, i.e. there exists a nonzero complex

function ψ such that

∂ log ψ̄ = −c.

We define real functions a and s, and a complex function x as follows

log a2 = 4

3
Re(log ψ̄), s = −4

3
Im(log ψ̄), x = e−is(c + ∂ log a2).

The metric defined by

g = 2P 2[µµ̄ + λ(dr +Wµ +Wµ̄ +Hλ)],

where

P = a

cos( r+s2 )
, W = ix e−ir − i

3
c,

and H is any real function defined on M 3
2 , is an FRT metric for (M,µ,λ)

and, due to Proposition 3.1.3, R44 = R24 = R22 = 0 is satisfied.



Chapter 4

Subconformal geometry and

shearfree geometry

In this chapter we study higher dimensional versions of shearfree null con-

gruences in conformal Lorentzian manifolds. We show that such structures

induce a subconformal structure and a partially integrable almost CR struc-

ture on the leaf space. Furthermore, we classify the Lorentzian metrics that

induce the same subconformal structure [3].

The results of this chapter is a joint work, which has been already pub-

lished in [3].

4.1 Subconformal geometry

We start with the definition of the subconformal manifold and its relation

with the partially integrable almost CR manifolds.

Definition 4.1.1 A subconformal manifold is a contact manifold M with

contact distribution D, which is endowed with a conformal class of Rieman-

nian metrics [gD].

For dimM = 3, subconformal manifolds are essentially the same as CR man-

ifolds. More precisely, the conformal metric on the contact distribution in-

duces two mutually conjugate complex structures that rotate vectors by an

106



4.1. SUBCONFORMAL GEOMETRY 107

angle π
2 . Vice versa, the conformal structure can be recovered from either

of these complex structures by making multiplication by complex numbers

conformal mappings on the distribution.

In higher dimensions the relation between subconformal and CR mani-

folds is less obvious.

Theorem 4.1.2 Let (M,D, [gD]) be an orientable subconformal manifold.

Then, M inherits two mutually conjugated partially integrable almost CR

structures J and −J .

Proof There exists a global contact 1-form λ such that D = kerλ, since M

is orientable. Let A = g−1dλ∣D, i.e. dλ∣D = g(A⋅, ⋅)∣D. The endomorphism

A is then nondegenerate and skew-symmetric, hence A2 is symmetric and

negative definite. Define

J =
√
−A−2A.

It follows that J depends smoothly on the coordinates of M . A different

choice of the contact form λ affects only the sign of J . We now show that J ,

and hence −J , define the partially integrable almost CR structures.

For any point x ∈ M denote the eigenvalues of A2
x by −α2

j (with αj > 0)

and the corresponding eigenspaces by Dj. Then Dj is invariant for Ax and

the restrictions Jx∣Dj
are equal to 1

αj
Ax∣Dj

. It follows

J2
x ∣Dj

= 1

αj
Ax∣Dj

1

αj
Ax∣Dj

= 1

α2
j

A2
x∣Dj

= −id.

The partial integrability condition can also be checked pointwise. For any

X,Y in Dj,

dλ(JxX,JxY ) = 1

α2
j

dλ(AxX,AxY ) = 1

α2
j

g(A2
xX,AxY ) =

−α2
j

α2
j

g(X,AxY )

= −g(AxY,X) = −dλ(Y,X) = dλ(X,Y ).

For X,Y from different eigenspaces dλ(X,Y ) = 0. This proves partial inte-

grability.
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The theorem above indicates that CR structures in higher dimensions are

weaker structures than subconformal ones. Indeed, in order to reconstruct a

subconformal structure from a CR structure (M,D,J) we need to prescribe

a dλ-orthogonal decomposition of

D = ⊕Dj

and positive numbers αj as above. Then let A∣Dj
= αjJ ∣Hj

and g = dλ ○A−1.

The extremal choices of the decomposition of D are, on the one hand, the

trivial decomposition D = D and, on the other hand, the decomposition

into complex one-dimensional Dj. The former choice is equivalent to the CR

structure while the latter one induces a much more rigid geometric structure.

4.2 Shearfree congruences and their orbit

spaces

We start with a global conformal version of shearfree congruences.

Definition 4.2.1 Let (M, [g]) be a (2n+2)-dimensional conformal Lorentzian

manifold with a shearfree vector field p and assume that the flow of p gener-

ates a free action of G = R or G = S1 so that the orbit space by M =M/G is

a manifold and the canonical projection π ∶ M →M is a principal G-bundle.

We call the (M, [g], p,M) a Robinson-Trautman space (RT-space) of type G.

We also say that the RT-space is twisting if (dθ)n ∧ θ ≠ 0, where θ = g(p, ⋅).

Notice that the notion of twist is invariant under scaling of p and g and hence

it is well-defined. Since the notion of the shearfreeness of p is invariant with

respect to rescaling of p, we can replace p in the definition of the twisting

RT-space by its equivalenc class [p].
We will show that the orbit space M of a twisting RT-space carries a

canonical subconformal structure and hence, a CR structure.

Definition 4.2.2 An RT-space (M, [g], [p]) and a subconformal structure

(D, [gD]) with contact distribution D and subconformal metric [gD] on the
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orbit space M are called compatible, if for any contact form λ on M with the

Reeb vector field Z

(i) kerπ∗λ = p⊥ = {X ∈ TM∶ g(X,p) = 0}, and

(ii) π∗gλD∣p⊥ is conformally equivalent to g∣p⊥. Here gλD is the extension of

gD to the degenerate metric on M with Z = ker gλD. That is,

g = P 2(π∗gλD + g(p, ⋅) ∨ ψ)

for some positive function P 2 and some 1-form ψ.

Theorem 4.2.3 Let (M, [g], [p]) be a twisting RT-space. Then, there exists

a unique compatible subconformal structure on the orbit space M .

Proof Let U ∈ TQM . Then we call u ∈ TqM a lift of U if π(q) = Q and

π∗u = U . A compatible contact distribution DQ ⊂ TQM must satisfy the

condition θ(u) = g(p, u) = 0 for any lift u, of any U ∈ DQ. This proves the

uniqueness of the contact structure. We show that this condition does not

depend on the choice of the lift. Let u0 and u1 be two lifts at q0 and q1,

respectively, connected by a path u(t), where t is the time parameter of the

flow of the vector field p. Then, with respect to some local trivialisation,

u(t) = U + α(t)p,

and

d

dt
θ(u(t)) = Lpg(u(t), p) = ρg(u(t), p) + θ(u(t))ψ(p)

= (ρ + ψ(p))θ(u(t))

it follows that

θ(u(t)) = Ce∫ ρ+ψ(p)dt,

and therefore, either equals zero for all t or nowhere.

We show that D is a contact distribution. Let λ be a form that annihilates

D. Then π∗λ = αθ, where α is a non-vanishing function. Since

π∗dλn ∧ λ = αn+1dθn ∧ θ ≠ 0
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it follows dλn ∧ λ ≠ 0. In particular, twisting RT-spaces must be even-

dimensional.

The conformal metric gD on DQ is uniquely determined by

gD(U,V ) = g(u, v)

for U,V ∈DQ and any lifts u, v ∈ p⊥ at the same base point q. We show that

this definition does not depend on the choice of the lifts. Let

u(t) = U + α(t)p, and v(t) = V + β(t)p

be two paths connecting two pairs of lifts (u0, v0) and u1, v1 with respect to

some trivialisation. Then,

d

dt
g(u(t), v(t)) = Lpg(u(t), v(t)) = ρg(u(t), v(t)),

where ρ depends on t but not on u(t) and v(t). It follows that g(u(t), v(t))
scales along the path by a multiplier that does not depend on the path.

Hence gD(U,V ) is well-defined as a conformal metric.

The theorem below describes the RT-structures that are compatible with

(M,D, [gM]).

Theorem 4.2.4 Let π∶M →M be a line bundle over a subconformal man-

ifold (M,D, [gD]) and p any non-vanishing vertical vector field. Then, the

triple (M, [g], [p]) is a twisting RT-structure compatible with (M,D, [gD])
if and only if

(4.1) g = P 2(π∗gλD + π∗λ ∨ ψ),

where λ is a contact form on M , P 2 is a positive function on M and ψ is a

1-form on M.

Proof Assume g has the form (4.1). Then,

(i) g is Lorentzian, and g∣p⊥ is conformally equivalent π∗gλD∣p⊥ .
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(ii) p is null, and

(iii) The following is satisfied

Lpg = 2P
∂P

∂t
(gD + π∗λ ∨ ψ) + P 2(π∗λ ∨Lpψ)

= 2P
∂P

∂v
g + π∗λ ∨ ψ̃.

That is, the vector field p is shearfree for g.

Therefore, (M, [g], [p]) is a RT-space compatible with (M,D, [gM]).
It remains to show that any conformal Lorentzian metric that satisfies (i)-

(iii) has the form (4.1). Since gD is compatible with g there exists a positive

function P 2 on M such that

g∣p⊥ = P 2π∗gλD∣p⊥ .

Consider the symmetric 2-form

T = g − P 2π∗gλD

for some choice of the contact form λ on M . Then, T (u, v) = 0 for any

u, v ∈ TqM such that g(v, p) = 0. Let z be a lift of the Reeb vector field Z.

We can choose z such that g(z, z) = 0.

Consider the 1-forms

θ = g(p, ⋅) = γπ∗λ, ψ′ = g(z, ⋅).

We have θ(z) = g(z, p) = γω(Z) = γ.
If u = u′ + αz is the decomposition of a vector field u on M such that

u′ ∈ p⊥, then

θ(u) = αg(p, z) = αγπ∗(Z) = αγ

hence,

α = 1

γ
θ(u) = π∗λ(u).
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For two vector fields u, v on M with u = u′ + αz, v = v′ + βz, where

u′, v′ ∈ p⊥ we have

T (u, v) = αg(z, v) + βg(u, z) = 1

γ
(θ(u)ψ′(v) + θ(v)ψ′(u))

= π∗λ ∨ ψ′(u, v).

It follows

g = P 2π∗gλD + T = P 2(π∗gλD + π∗λ ∨ ψ),

where ψ = 1
P 2ψ′.

4.3 Applications of shearfree congruences

In this section we survey some applications of shearfree congruences in di-

mension 4.

The correspondence between 4-dimensional shearfree congruences and 3-

dimensional CR manifolds has been known by physicists and has been ex-

ploited in both directions (see, e.g. [56, 25] and references therein).

Consider the Lorentzian metrics

g = P 2µµ̄ + λ(dr +Wµ +Wµ̄ +Hλ),

where µ = dz,

λ = du − 2 Im
((a + b)∣z∣2 + b)dz

z(1 + ∣z∣2)2
,

P 2 = r2

(1 + ∣z∣2)2
+ (b − a) + (b + a)∣z∣2

(1 + ∣z∣2)4
,

W = 2 iaz

(1 + ∣z∣2)2
,

H = 2(mr + b2)(1 + ∣z∣2)2 − 2ab(1 − ∣z∣4)
r2(1 + ∣z∣2)2 + (b − a + (b + a)∣z∣2)2

− 1.

Here z = x+ iy, u, r are coordinates in R4 and a, b,m are real parameters. The

metric g is singular for z = 0 if b ≠ 0, and for r = 0 and ∣z∣2 = a−b
a+b if ∣b∣ ≤ ∣a∣.

The corresponding RT-space (M, [g], [∂r]) is twisting, unless a = b = 0,

the metric g is the Kerr rotating black hole with mass m and the angular
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momentum parameter a; if a = b = 0 the metric g describes the Schwarzschild

black hole with mass m. For m = a = 0 this is the Taub-NUT vacuum metric.

The orbit spaces M can be described with C×R with the coordinates (z, u).
If b ≠ 0 we have to delete the singular line z = 0. The induced subcon-

formal structures are (M, [λ], [µµ̄]) and the CR structures are defined by

(M, [(λ,µ)]). Notice that the parameter m only appears in the function D

and does not affect the family of CR manifolds.

All resulting CR manifolds can be embedded into C2 with the coordinates

(z,w) as

v = Imw = −2a

1 + ∣z∣2
+ 2b log

∣z∣2
1 + ∣z∣2

.

This is the trivial Levi-flat CR manifold v = 0 for the Schwarzschild solution,

a spherical CR manifold (with singularity at 0) in the Taub-NUT case and

a non-spherical Sasakian manifold for the Kerr solution.
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[10] Cartan, E. Sur la géométrie pseudo-conforme des hypersurfaces de

l’espace de deux variables complexes II. Ann. Scuola Norm. Sup. Pisa

Cl. Sci. (2) 1, 4 (1932), 333–354.

[11] Chern, S.-s. An elementary proof of the existence of isothermal pa-

rameters on a surface. Proc. Amer. Math. Soc. 6 (1955), 771–782.

[12] Debney, G. C., Kerr, R. P., and Schild, A. Solutions of the

Einstein and Einstein-Maxwell equations. J. Mathematical Phys. 10

(1969), 1842–1854.

[13] Dragomir, S., and Tomassini, G. Differential geometry and anal-

ysis on CR manifolds, vol. 246 of Progress in Mathematics. Birkhäuser
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