Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/29911
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Shafapour Tehrany, Mahyat | en |
dc.contributor.author | Kumar, Lalit | en |
dc.contributor.author | Shabani, Farzin | en |
dc.date.accessioned | 2021-01-13T23:07:11Z | - |
dc.date.available | 2021-01-13T23:07:11Z | - |
dc.date.issued | 2019-10-09 | - |
dc.identifier.citation | PeerJ, v.7, p. 1-32 | en |
dc.identifier.issn | 2167-8359 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/29911 | - |
dc.description.abstract | In this study, we propose and test a novel ensemble method for improving the accuracy of each method in flood susceptibility mapping using evidential belief function (EBF) and support vector machine (SVM). The outcome of the proposed method was compared with the results of each method. The proposed method was implemented four times using different SVM kernels. Hence, the efficiency of each SVM kernel was also assessed. First, a bivariate statistical analysis using EBF was performed to assess the correlations among the classes of each flood conditioning factor with flooding. Subsequently, the outcome of the first stage was used in a multivariate statistical analysis performed by SVM. A highest prediction accuracy of 92.11% was achieved by an ensemble EBF-SVM-radial basis function method; the achieved accuracy was 7% and 3% higher than that offered by the individual EBF method and the individual SVM method, respectively. Among all the applied methods, both the individual EBF and SVM methods achieved the lowest accuracies. The reason for the improved accuracy offered by the ensemble methods is that by integrating the methods, a more detailed assessment of the flooding and conditioning factors can be performed, thereby increasing the accuracy of the final map. | en |
dc.language | en | en |
dc.publisher | PeerJ, Ltd | en |
dc.relation.ispartof | PeerJ | en |
dc.rights | Attribution 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.title | A novel GIS-based ensemble technique for flood susceptibility mapping using evidential belief function and support vector machine: Brisbane, Australia | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.7717/peerj.7653 | en |
dc.identifier.pmid | 31616580 | en |
dcterms.accessRights | UNE Green | en |
local.contributor.firstname | Mahyat | en |
local.contributor.firstname | Lalit | en |
local.contributor.firstname | Farzin | en |
local.subject.for2008 | 050204 Environmental Impact Assessment | en |
local.subject.for2008 | 090903 Geospatial Information Systems | en |
local.subject.seo2008 | 960305 Ecosystem Adaptation to Climate Change | en |
local.profile.school | School of Environmental and Rural Science | en |
local.profile.school | School of Environmental and Rural Science | en |
local.profile.email | lkumar@une.edu.au | en |
local.profile.email | fshaban2@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | United Kingdom | en |
local.identifier.runningnumber | e7653 | en |
local.format.startpage | 1 | en |
local.format.endpage | 32 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 7 | en |
local.title.subtitle | Brisbane, Australia | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | Shafapour Tehrany | en |
local.contributor.lastname | Kumar | en |
local.contributor.lastname | Shabani | en |
dc.identifier.staff | une-id:lkumar | en |
dc.identifier.staff | une-id:fshaban2 | en |
local.profile.orcid | 0000-0002-9205-756X | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/29911 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | A novel GIS-based ensemble technique for flood susceptibility mapping using evidential belief function and support vector machine | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Shafapour Tehrany, Mahyat | en |
local.search.author | Kumar, Lalit | en |
local.search.author | Shabani, Farzin | en |
local.open.fileurl | https://rune.une.edu.au/web/retrieve/fc1cc1c6-bb08-4f15-b885-de6127fab65b | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.identifier.wosid | 000489269900001 | en |
local.year.published | 2019 | en |
local.fileurl.open | https://rune.une.edu.au/web/retrieve/fc1cc1c6-bb08-4f15-b885-de6127fab65b | en |
local.fileurl.openpublished | https://rune.une.edu.au/web/retrieve/fc1cc1c6-bb08-4f15-b885-de6127fab65b | en |
local.subject.for2020 | 410402 Environmental assessment and monitoring | en |
local.subject.for2020 | 401302 Geospatial information systems and geospatial data modelling | en |
local.subject.seo2020 | 190102 Ecosystem adaptation to climate change | en |
Appears in Collections: | Journal Article School of Environmental and Rural Science |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
openpublished/ANovelTehranyKumarShabani2019JournalArticle.pdf | Published version | 17 MB | Adobe PDF Download Adobe | View/Open |
SCOPUSTM
Citations
85
checked on Feb 15, 2025
Page view(s)
1,376
checked on Jun 23, 2024
Download(s)
40
checked on Jun 23, 2024
This item is licensed under a Creative Commons License