Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/29150
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBrinkhoff, Jamesen
dc.contributor.authorHornbuckle, Johnen
dc.contributor.authorBallester Lurbe, Carlosen
dc.date.accessioned2020-07-29T05:10:15Z-
dc.date.available2020-07-29T05:10:15Z-
dc.date.issued2019-
dc.identifier.citationIFAC-PapersOnLine, 52(30), p. 385-390en
dc.identifier.issn2405-8963en
dc.identifier.urihttps://hdl.handle.net/1959.11/29150-
dc.description.abstractThis study integrates measured soil moisture sensor data, a remotely sensed crop vegetation index, and weather data to train models, in order to predict future soil moisture. The study was carried out on a cotton farm, with wireless soil moisture monitoring equipment deployed across five plots. Lasso, Decision Tree, Random Forest and Support Vector Machine modeling methods were trialled. Random Forest models gave consistently good results (mean 7-day prediction error from 8.0 to 16.9 kPA except in one plot with malfunctioning sensors). Linear regression with two of the most important predictor variables was not as accurate, but allowed extraction of an interpretable model. The system was implemented in Google Cloud Platform and a model was trained continuously through the season. An online irrigation dashboard was created showing previous and forecast soil moisture conditions, along with weather and normalized difference vegetation index (NDVI). This was used to guide operators in advance of irrigation water needs. The methodology developed in this study could be used as part of a closed-loop sensing and irrigation automation system.en
dc.languageenen
dc.publisherElsevier Ltden
dc.relation.ispartofIFAC-PapersOnLineen
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleSoil moisture forecasting for irrigation recommendationen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.ifacol.2019.12.586en
dcterms.accessRightsUNE Greenen
local.contributor.firstnameJamesen
local.contributor.firstnameJohnen
local.contributor.firstnameCarlosen
local.subject.for2008070107 Farming Systems Researchen
local.subject.seo2008820301 Cottonen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailjbrinkho@une.edu.auen
local.profile.emailjhornbu2@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited Kingdomen
local.format.startpage385en
local.format.endpage390en
local.identifier.scopusid85081048567en
local.peerreviewedYesen
local.identifier.volume52en
local.identifier.issue30en
local.access.fulltextYesen
local.contributor.lastnameBrinkhoffen
local.contributor.lastnameHornbuckleen
local.contributor.lastnameBallester Lurbeen
dc.identifier.staffune-id:jbrinkhoen
dc.identifier.staffune-id:jhornbu2en
local.profile.orcid0000-0002-0721-2458en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/29150en
local.date.onlineversion2019-12-31-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleSoil moisture forecasting for irrigation recommendationen
local.relation.fundingsourcenoteCotton Research and Development Corporation (project 1819FRP084)en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorBrinkhoff, Jamesen
local.search.authorHornbuckle, Johnen
local.search.authorBallester Lurbe, Carlosen
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/be9fd090-8e70-43fe-a444-8265f6c49b27en
local.istranslatedNoen
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.identifier.wosid000505058200066en
local.year.available2019en
local.year.published2019en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/be9fd090-8e70-43fe-a444-8265f6c49b27en
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/be9fd090-8e70-43fe-a444-8265f6c49b27en
local.subject.for2020300201 Agricultural hydrologyen
local.subject.seo2020260602 Cottonen
dc.notification.token1b4419ff-4b37-4f91-b2f9-a47bf2decf36en
local.codeupdate.date2021-12-07T08:20:04.834en
local.codeupdate.epersonjbrinkho@une.edu.auen
local.codeupdate.finalisedtrueen
local.original.for2020undefineden
local.original.seo2020260602 Cottonen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
4 files
File Description SizeFormat 
openpublished/SoilBrinkhoffHornbuckle2019JournalArticle.pdfPublished version1.22 MBAdobe PDF
Download Adobe
View/Open
Show simple item record

SCOPUSTM   
Citations

14
checked on Jan 18, 2025

Page view(s)

1,698
checked on Feb 25, 2024

Download(s)

230
checked on Feb 25, 2024
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons