Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/28583
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMeyer, Karinen
dc.date.accessioned2020-04-21T23:51:32Z-
dc.date.available2020-04-21T23:51:32Z-
dc.date.issued2019-07-
dc.identifier.citationJournal of Animal Breeding and Genetics, 136(4), p. 243-251en
dc.identifier.issn1439-0388en
dc.identifier.issn0931-2668en
dc.identifier.urihttps://hdl.handle.net/1959.11/28583-
dc.description.abstractMultivariate estimation of genetic parameters involving more than a handful of traits can be afflicted by problems arising through substantial sampling variation. We present a review of underlying causes and proposals to improve estimates, focusing on linear mixed model-based estimation via restricted maximum likelihood (REML). Both full multivariate analyses and pooling of results from overlapping subsets of traits are considered. It is suggested to impose a penalty on the likelihood designed to reduce sampling variances at the expense of a little additional bias. Simulation results are discussed which demonstrate that this can yield REML estimates that are on average closer to the population values than their unpenalized counterparts. Suitable penalties can be obtained based on assumed prior distributions of selected parameters. Necessary choices of penalty functions and of the stringency of penalization are examined. We argue that scale-free penalty functions lend themselves to a simple scheme imposing a mild, default penalty which can yield “better” estimates without being likely to incur detrimental effects.en
dc.languageenen
dc.publisherWiley-Blackwell Verlag GmbHen
dc.relation.ispartofJournal of Animal Breeding and Geneticsen
dc.title"Bending" and beyond: Better estimates of quantitative genetic parameters?en
dc.typeJournal Articleen
dc.identifier.doi10.1111/jbg.12386en
dc.identifier.pmid31247680en
local.contributor.firstnameKarinen
local.subject.for2008070201 Animal Breedingen
local.subject.seo2008830301 Beef Cattleen
local.profile.schoolAnimal Genetics and Breeding Uniten
local.profile.emailkmeyer@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeGermanyen
local.format.startpage243en
local.format.endpage251en
local.identifier.scopusid85068036906en
local.peerreviewedYesen
local.identifier.volume136en
local.identifier.issue4en
local.title.subtitleBetter estimates of quantitative genetic parameters?en
local.contributor.lastnameMeyeren
dc.identifier.staffune-id:kmeyeren
local.profile.orcid0000-0003-2663-9059en
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/28583en
local.date.onlineversion2019-06-27-
dc.identifier.academiclevelAcademicen
local.title.maintitle"Bending" and beyonden
local.relation.fundingsourcenoteMeat and Livestock Australia (grant number L.GEN.1704)en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorMeyer, Karinen
local.istranslatedNoen
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.identifier.wosid000473071800003en
local.year.available2019en
local.year.published2019en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/94f09448-2063-48d0-b8b3-a1b6dc8e4b52en
local.subject.for2020300305 Animal reproduction and breedingen
local.subject.seo2020100401 Beef cattleen
Appears in Collections:Animal Genetics and Breeding Unit (AGBU)
Journal Article
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

6
checked on Jan 25, 2025

Page view(s)

1,954
checked on Dec 31, 2023

Download(s)

2
checked on Dec 31, 2023
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.