Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/28583
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Meyer, Karin | en |
dc.date.accessioned | 2020-04-21T23:51:32Z | - |
dc.date.available | 2020-04-21T23:51:32Z | - |
dc.date.issued | 2019-07 | - |
dc.identifier.citation | Journal of Animal Breeding and Genetics, 136(4), p. 243-251 | en |
dc.identifier.issn | 1439-0388 | en |
dc.identifier.issn | 0931-2668 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/28583 | - |
dc.description.abstract | Multivariate estimation of genetic parameters involving more than a handful of traits can be afflicted by problems arising through substantial sampling variation. We present a review of underlying causes and proposals to improve estimates, focusing on linear mixed model-based estimation via restricted maximum likelihood (REML). Both full multivariate analyses and pooling of results from overlapping subsets of traits are considered. It is suggested to impose a penalty on the likelihood designed to reduce sampling variances at the expense of a little additional bias. Simulation results are discussed which demonstrate that this can yield REML estimates that are on average closer to the population values than their unpenalized counterparts. Suitable penalties can be obtained based on assumed prior distributions of selected parameters. Necessary choices of penalty functions and of the stringency of penalization are examined. We argue that scale-free penalty functions lend themselves to a simple scheme imposing a mild, default penalty which can yield “better” estimates without being likely to incur detrimental effects. | en |
dc.language | en | en |
dc.publisher | Wiley-Blackwell Verlag GmbH | en |
dc.relation.ispartof | Journal of Animal Breeding and Genetics | en |
dc.title | "Bending" and beyond: Better estimates of quantitative genetic parameters? | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1111/jbg.12386 | en |
dc.identifier.pmid | 31247680 | en |
local.contributor.firstname | Karin | en |
local.subject.for2008 | 070201 Animal Breeding | en |
local.subject.seo2008 | 830301 Beef Cattle | en |
local.profile.school | Animal Genetics and Breeding Unit | en |
local.profile.email | kmeyer@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | Germany | en |
local.format.startpage | 243 | en |
local.format.endpage | 251 | en |
local.identifier.scopusid | 85068036906 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 136 | en |
local.identifier.issue | 4 | en |
local.title.subtitle | Better estimates of quantitative genetic parameters? | en |
local.contributor.lastname | Meyer | en |
dc.identifier.staff | une-id:kmeyer | en |
local.profile.orcid | 0000-0003-2663-9059 | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/28583 | en |
local.date.onlineversion | 2019-06-27 | - |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | "Bending" and beyond | en |
local.relation.fundingsourcenote | Meat and Livestock Australia (grant number L.GEN.1704) | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Meyer, Karin | en |
local.istranslated | No | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.identifier.wosid | 000473071800003 | en |
local.year.available | 2019 | en |
local.year.published | 2019 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/94f09448-2063-48d0-b8b3-a1b6dc8e4b52 | en |
local.subject.for2020 | 300305 Animal reproduction and breeding | en |
local.subject.seo2020 | 100401 Beef cattle | en |
Appears in Collections: | Animal Genetics and Breeding Unit (AGBU) Journal Article |
Files in This Item:
File | Size | Format |
---|
SCOPUSTM
Citations
6
checked on Jan 25, 2025
Page view(s)
1,954
checked on Dec 31, 2023
Download(s)
2
checked on Dec 31, 2023
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.