Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/28431
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBrinkhoff, Jamesen
dc.contributor.authorDunn, Brian Wen
dc.contributor.authorRobson, Andrew Jen
dc.contributor.authorDunn, Tina Sen
dc.contributor.authorDehaan, Remy Len
dc.date.accessioned2020-04-02T00:18:48Z-
dc.date.available2020-04-02T00:18:48Z-
dc.date.issued2019-08-06-
dc.identifier.citationRemote Sensing, 11(15), p. 1-22en
dc.identifier.issn2072-4292en
dc.identifier.urihttps://hdl.handle.net/1959.11/28431-
dc.description.abstractMid-season nitrogen (N) application in rice crops can maximize yield and profitability. This requires accurate and efficient methods of determining rice N uptake in order to prescribe optimal N amounts for topdressing. This study aims to determine the accuracy of using remotely sensed multispectral data from satellites to predict N uptake of rice at the panicle initiation (PI) growth stage, with a view to providing optimum variable-rate N topdressing prescriptions without needing physical sampling. Field experiments over 4 years, 4–6 N rates, 4 varieties and 2 sites were conducted, with at least 3 replicates of each plot. One WorldView satellite image for each year was acquired, close to the date of PI. Numerous single- and multi-variable models were investigated. Among single-variable models, the square of the NDRE vegetation index was shown to be a good predictor of N uptake (R² = 0.75, RMSE = 22.8 kg/ha for data pooled from all years and experiments). For multi-variable models, Lasso regularization was used to ensure an interpretable and compact model was chosen and to avoid over fitting. Combinations of remotely sensed reflectances and spectral indexes as well as variety, climate and management data as input variables for model training achieved R² < 0.9 and RMSE < 15 kg/ha for the pooled data set. The ability of remotely sensed data to predict N uptake in new seasons where no physical sample data has yet been obtained was tested. A methodology to extract models that generalize well to new seasons was developed, avoiding model overfitting. Lasso regularization selected four or less input variables, and yielded R² of better than 0.67 and RMSE better than 27.4 kg/ha over four test seasons that weren’t used to train the models.en
dc.languageenen
dc.publisherMDPI AGen
dc.relation.ispartofRemote Sensingen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleModeling Mid-Season Rice Nitrogen Uptake Using Multispectral Satellite Dataen
dc.typeJournal Articleen
dc.identifier.doi10.3390/rs11151837en
dcterms.accessRightsUNE Greenen
local.contributor.firstnameJamesen
local.contributor.firstnameBrian Wen
local.contributor.firstnameAndrew Jen
local.contributor.firstnameTina Sen
local.contributor.firstnameRemy Len
local.subject.for2008070306 Crop and Pasture Nutritionen
local.subject.seo2008820402 Riceen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailjbrinkho@une.edu.auen
local.profile.emailarobson7@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeSwitzerlanden
local.identifier.runningnumber1837en
local.format.startpage1en
local.format.endpage22en
local.identifier.scopusid85070474437en
local.peerreviewedYesen
local.identifier.volume11en
local.identifier.issue15en
local.access.fulltextYesen
local.contributor.lastnameBrinkhoffen
local.contributor.lastnameDunnen
local.contributor.lastnameRobsonen
local.contributor.lastnameDunnen
local.contributor.lastnameDehaanen
dc.identifier.staffune-id:jbrinkhoen
dc.identifier.staffune-id:arobson7en
local.profile.orcid0000-0002-0721-2458en
local.profile.orcid0000-0001-5762-8980en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/28431en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleModeling Mid-Season Rice Nitrogen Uptake Using Multispectral Satellite Dataen
local.relation.fundingsourcenoteNSW Department of Primary Industries; AgriFutures (project numbers PRJ-011058 and PRJ-009772)en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorBrinkhoff, Jamesen
local.search.authorDunn, Brian Wen
local.search.authorRobson, Andrew Jen
local.search.authorDunn, Tina Sen
local.search.authorDehaan, Remy Len
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/d935ca28-513f-4f5d-ab30-9170c16b9272en
local.istranslatedNoen
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.identifier.wosid000482442800101en
local.year.published2019en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/d935ca28-513f-4f5d-ab30-9170c16b9272en
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/d935ca28-513f-4f5d-ab30-9170c16b9272en
local.subject.for2020300407 Crop and pasture nutritionen
local.subject.seo2020260308 Riceen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
openpublished/ModelingBrinkhoffRobson2019JournalArticle.pdfPublished version4.68 MBAdobe PDF
Download Adobe
View/Open
Show simple item record

SCOPUSTM   
Citations

30
checked on Dec 28, 2024

Page view(s)

2,238
checked on Feb 25, 2024

Download(s)

118
checked on Feb 25, 2024
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons