Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/27975
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTurner, Joseph Ven
dc.contributor.authorMaddalena, Desmond Jen
dc.contributor.authorAgatonovic-Kustrin, Snezanaen
dc.date.accessioned2020-01-24T05:07:01Z-
dc.date.available2020-01-24T05:07:01Z-
dc.date.issued2004-01-
dc.identifier.citationPharmaceutical Research, 21(1), p. 68-82en
dc.identifier.issn1573-904Xen
dc.identifier.issn0724-8741en
dc.identifier.urihttps://hdl.handle.net/1959.11/27975-
dc.description.abstractPurpose. Radial basis function artificial neural networks and theoretical descriptors were used to develop a quantitative structure– pharmacokinetic relationship for structurally diverse drug compounds. <br/> Methods. Human bioavailability values were taken from the literature and descriptors were generated from the drug structures. All models were trained with 137 compounds and tested with a further 15, after which they were evaluated for predictive ability with an additional 15 compounds. <br/> Results. The final model possessed a 10-31-1 topology and training and testing correlation coefficients were 0.736 and 0.897, respectively. Predictions for independent compounds agreed well with experimental literature values, especially for compounds that were well absorbed and/or had high observed bioavailability. Important theoretical descriptors included solubility parameters, electronic descriptors, and topological indices. <br/> Conclusions. Useful information regarding drug bioavailability was gained from drug structure alone, reducing the need for experimental methods in drug development.en
dc.languageenen
dc.publisherSpringer New York LLCen
dc.relation.ispartofPharmaceutical Researchen
dc.titleBioavailability Prediction Based on Molecular Structure for a Diverse Series of Drugsen
dc.typeJournal Articleen
dc.identifier.doi10.1023/B:PHAM.0000012154.09631.26en
local.contributor.firstnameJoseph Ven
local.contributor.firstnameDesmond Jen
local.contributor.firstnameSnezanaen
local.subject.for2008030402 Biomolecular Modelling and Designen
local.subject.for2008030799 Theoretical and Computational Chemistry not elsewhere classifieden
local.subject.for2008030404 Cheminformatics and Quantitative Structure-Activity Relationshipsen
local.subject.seo2008860803 Human Pharmaceutical Treatments (e.g. Antibiotics)en
local.profile.schoolSchool of Rural Medicineen
local.profile.emailJoseph.Turner@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited States of Americaen
local.format.startpage68en
local.format.endpage82en
local.identifier.scopusid1642579654en
local.peerreviewedYesen
local.identifier.volume21en
local.identifier.issue1en
local.contributor.lastnameTurneren
local.contributor.lastnameMaddalenaen
local.contributor.lastnameAgatonovic-Kustrinen
dc.identifier.staffune-id:jturne59en
local.profile.orcid0000-0002-0023-4275en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/27975en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleBioavailability Prediction Based on Molecular Structure for a Diverse Series of Drugsen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorTurner, Joseph Ven
local.search.authorMaddalena, Desmond Jen
local.search.authorAgatonovic-Kustrin, Snezanaen
local.istranslatedNoen
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2004en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/fbaa7ffb-1bfa-47f7-9fa5-e5bb42945eeben
Appears in Collections:Journal Article
School of Rural Medicine
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

74
checked on Oct 26, 2024

Page view(s)

1,966
checked on Aug 3, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.