Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/27971
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTurner, Joseph Ven
dc.contributor.authorMaddalena, Desmond Jen
dc.contributor.authorCutler, David Jen
dc.date.accessioned2020-01-24T04:11:23Z-
dc.date.available2020-01-24T04:11:23Z-
dc.date.issued2004-02-
dc.identifier.citationInternational Journal of Pharmaceutics, 270(1-2), p. 209-219en
dc.identifier.issn1873-3476en
dc.identifier.issn0378-5173en
dc.identifier.urihttps://hdl.handle.net/1959.11/27971-
dc.description.abstractSimple methods for determining the human pharmacokinetics of known and unknown drug-like compounds is a much sought-after goal in the pharmaceutical industry. The current study made use of artificial neural networks (ANNs) for the prediction of clearances, fraction bound to plasma proteins, and volume of distribution of a series of structurally diverse compounds. A number of theoretical descriptors were generated from the drug structures and both automated and manual pruning were used to derive optimal subsets of descriptors for quantitative structure-pharmacokinetic relationship models. Models were trained on one set of compounds and validated with another. Absolute predicted ability was evaluated using a further independent test set of compounds. Correlations for test compounds ranged from 0.855 to 0.992. Predicted values agreed closely with experimental values for total clearance, renal clearance, and volume of distribution, while predictions for protein binding were encouraging. The combination of descriptor generation, ANNs, and the speed and success of this technique compared with conventional methods shows strong potential for use in pharmaceutical product development.en
dc.languageenen
dc.publisherElsevier BVen
dc.relation.ispartofInternational Journal of Pharmaceuticsen
dc.titlePharmacokinetic parameter prediction from drug structure using artificial neural networksen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.ijpharm.2003.10.011en
local.contributor.firstnameJoseph Ven
local.contributor.firstnameDesmond Jen
local.contributor.firstnameDavid Jen
local.subject.for2008030402 Biomolecular Modelling and Designen
local.subject.for2008030799 Theoretical and Computational Chemistry not elsewhere classifieden
local.subject.for2008030404 Cheminformatics and Quantitative Structure-Activity Relationshipsen
local.subject.seo2008860803 Human Pharmaceutical Treatments (e.g. Antibiotics)en
local.profile.schoolSchool of Rural Medicineen
local.profile.emailJoseph.Turner@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeNetherlandsen
local.format.startpage209en
local.format.endpage219en
local.identifier.scopusid0346391120en
local.peerreviewedYesen
local.identifier.volume270en
local.identifier.issue1-2en
local.contributor.lastnameTurneren
local.contributor.lastnameMaddalenaen
local.contributor.lastnameCutleren
dc.identifier.staffune-id:jturne59en
local.profile.orcid0000-0002-0023-4275en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/27971en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitlePharmacokinetic parameter prediction from drug structure using artificial neural networksen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorTurner, Joseph Ven
local.search.authorMaddalena, Desmond Jen
local.search.authorCutler, David Jen
local.istranslatedNoen
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2004en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/182eb21f-af85-41fa-b351-c02008334b57en
Appears in Collections:Journal Article
School of Rural Medicine
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

73
checked on Nov 23, 2024

Page view(s)

1,948
checked on Jul 21, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.