Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/27967
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTurner, Joseph Ven
dc.contributor.authorCutler, David Jen
dc.contributor.authorSpence, Ianen
dc.contributor.authorMaddalena, Desmond Jen
dc.date.accessioned2020-01-23T00:46:37Z-
dc.date.available2020-01-23T00:46:37Z-
dc.date.issued2003-05-
dc.identifier.citationJournal of Computational Chemistry, 24(7), p. 891-897en
dc.identifier.issn1096-987Xen
dc.identifier.issn0192-8651en
dc.identifier.urihttps://hdl.handle.net/1959.11/27967-
dc.description.abstractSelection of optimal descriptors in quantitative structure-activity-property relationship (QSAR/QSPR) studies has been a perennial problem. Artificial Neural Networks (ANNs) have been used widely in QSAR/QSPR studies but less widely in descriptor selection. The current study used ANNs to select an optimal set of descriptors using large numbers of input variables. The effects of clean, noisy, and random input descriptors with linear, nonlinear, and periodic data on synthetic and real data QSAR/QSPR sets were examined. The optimal set of descriptors could be determined using a signal-to-noise ratio method. The optimal values for the rho parameter, which relates sample size to network architecture, were found to vary with the type of data. ANNs were able to detect meaningful descriptors in the presence of large numbers of random false descriptors.en
dc.languageenen
dc.publisherJohn Wiley & Sons, Incen
dc.relation.ispartofJournal of Computational Chemistryen
dc.titleSelective Descriptor Pruning for QSAR/QSPR Studies Using Artificial Neural Networksen
dc.typeJournal Articleen
dc.identifier.doi10.1002/jcc.10148en
local.contributor.firstnameJoseph Ven
local.contributor.firstnameDavid Jen
local.contributor.firstnameIanen
local.contributor.firstnameDesmond Jen
local.subject.for2008030402 Biomolecular Modelling and Designen
local.subject.for2008030799 Theoretical and Computational Chemistry not elsewhere classifieden
local.subject.for2008030404 Cheminformatics and Quantitative Structure-Activity Relationshipsen
local.subject.seo2008860803 Human Pharmaceutical Treatments (e.g. Antibiotics)en
local.profile.schoolSchool of Rural Medicineen
local.profile.emailJoseph.Turner@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited States of Americaen
local.format.startpage891en
local.format.endpage897en
local.identifier.scopusid0038334741en
local.peerreviewedYesen
local.identifier.volume24en
local.identifier.issue7en
local.contributor.lastnameTurneren
local.contributor.lastnameCutleren
local.contributor.lastnameSpenceen
local.contributor.lastnameMaddalenaen
dc.identifier.staffune-id:jturne59en
local.profile.orcid0000-0002-0023-4275en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/27967en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleSelective Descriptor Pruning for QSAR/QSPR Studies Using Artificial Neural Networksen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorTurner, Joseph Ven
local.search.authorCutler, David Jen
local.search.authorSpence, Ianen
local.search.authorMaddalena, Desmond Jen
local.istranslatedNoen
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2003en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/0f6d30ee-fc63-4bbf-b26b-06fc5c25574een
Appears in Collections:Journal Article
School of Rural Medicine
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

16
checked on Oct 26, 2024

Page view(s)

1,950
checked on Aug 11, 2024

Download(s)

2
checked on Aug 11, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.