Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/27138
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPendall, Eliseen
dc.contributor.authorOsanai, Yuien
dc.contributor.authorWilliams, Amity Len
dc.contributor.authorHovenden, Mark Jen
dc.date.accessioned2019-06-13T06:11:07Z-
dc.date.available2019-06-13T06:11:07Z-
dc.date.issued2011-01-
dc.identifier.citationGlobal Change Biology, 17(1), p. 505-514en
dc.identifier.issn1365-2486en
dc.identifier.issn1354-1013en
dc.identifier.urihttps://hdl.handle.net/1959.11/27138-
dc.description.abstractThe stability of soil organic matter (SOM) pools exposed to elevated CO₂ and warming has not been evaluated adequately in long-term experiments and represents a substantial source of uncertainty in predicting ecosystem feedbacks to climate change. We conducted a 6-year experiment combining free-air CO₂ enrichment (FACE, 550 ppm) and warming (+2°C) to evaluate changes in SOM accumulation in native Australian grassland. In this system, competitive interactions appear to favor C₄ over C₃ species under FACE and warming. We therefore investigated the role of plant functional type (FT) on biomass and SOM responses to the long-term treatments by carefully sampling soil under patches of C₃- and C₄-dominated vegetation. We used physical fractionation to quantify particulate organic matter (POM) and long-term incubation to assess potential decomposition rates. Aboveground production of C₄ grasses increased in response to FACE, but total root biomass declined. Across treatments, C : N ratios were higher in leaves, roots and POM of C₄ vegetation. CO₂ and temperature treatments interacted with FT to influence SOM, and especially POM, such that soil carbon was increased by warming under C₄ vegetation, but not in combination with elevated CO₂. Potential decomposition rates increased in response to FACE and decreased with warming, possibly owing to treatment effects on soil moisture and microbial community composition. Decomposition was also inversely correlated with root N concentration, suggesting increased microbial demand for older, N-rich SOM in treatments with low root N inputs. This research suggests that C₃-C₄ vegetation responses to future climate conditions will strongly influence SOM storage in temperate grasslands.en
dc.languageenen
dc.publisherWiley-Blackwell Publishing Ltden
dc.relation.ispartofGlobal Change Biologyen
dc.titleSoil carbon storage under simulated climate change is mediated by plant functional typeen
dc.typeJournal Articleen
dc.identifier.doi10.1111/j.1365-2486.2010.02296.xen
local.contributor.firstnameEliseen
local.contributor.firstnameYuien
local.contributor.firstnameAmity Len
local.contributor.firstnameMark Jen
local.relation.isfundedbyARCen
local.subject.for2008069902 Global Change Biologyen
local.subject.for2008050301 Carbon Sequestration Scienceen
local.subject.for2008060208 Terrestrial Ecologyen
local.subject.seo2008960301 Climate Change Adaptation Measuresen
local.subject.seo2008960811 Sparseland, Permanent Grassland and Arid Zone Flora, Fauna and Biodiversityen
local.subject.seo2008960305 Ecosystem Adaptation to Climate Changeen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.emailyosanai@une.edu.auen
local.output.categoryC1en
local.grant.numberDP0984779en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited Kingdomen
local.format.startpage505en
local.format.endpage514en
local.identifier.scopusid78649784113en
local.peerreviewedYesen
local.identifier.volume17en
local.identifier.issue1en
local.contributor.lastnamePendallen
local.contributor.lastnameOsanaien
local.contributor.lastnameWilliamsen
local.contributor.lastnameHovendenen
dc.identifier.staffune-id:yosanaien
local.profile.orcid0000-0001-6390-5382en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/27138en
local.date.onlineversion2010-12-01-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleSoil carbon storage under simulated climate change is mediated by plant functional typeen
local.relation.fundingsourcenoteUSDA - CSREES (grant numbers: 2008-35107-04527 and 2008-35107-18655)en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.relation.grantdescriptionARC/DP0984779en
local.search.authorPendall, Eliseen
local.search.authorOsanai, Yuien
local.search.authorWilliams, Amity Len
local.search.authorHovenden, Mark Jen
local.uneassociationUnknownen
local.year.available2010en
local.year.published2011en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/6f31e0e5-ab4c-4a91-9e53-f417237973c9en
local.subject.for2020319902 Global change biologyen
local.subject.for2020410101 Carbon sequestration scienceen
local.subject.for2020310308 Terrestrial ecologyen
local.subject.seo2020190101 Climate change adaptation measures (excl. ecosystem)en
local.subject.seo2020180606 Terrestrial biodiversityen
local.subject.seo2020190102 Ecosystem adaptation to climate changeen
Appears in Collections:Journal Article
School of Environmental and Rural Science
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

57
checked on Apr 6, 2024

Page view(s)

868
checked on Mar 8, 2023

Download(s)

4
checked on Mar 8, 2023
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.