Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/27084
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Stover, Joshua | en |
dc.contributor.author | Falzon, Greg | en |
dc.contributor.author | Jensen, Troy | en |
dc.contributor.author | Schroeder, Bernard | en |
dc.contributor.author | Lamb, David W | en |
local.source.editor | Editor(s): Warrick Nelson | en |
dc.date.accessioned | 2019-06-04T00:07:27Z | - |
dc.date.available | 2019-06-04T00:07:27Z | - |
dc.date.issued | 2017-10-16 | - |
dc.identifier.citation | Proceedings of the 7th Asian-Australasian Conference on Precision Agriculture, p. 1-8 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/27084 | - |
dc.description.abstract | Efficient use of fertilisers, in particular the use of Nitrogen (N), is one of the rate-limiting factors in meeting global food production requirements. While N is a key driver in increasing crop yields, overuse can also lead to negative environmental and health impacts. It has been suggested that Variable Rate Fertiliser (VRF) techniques may help to reduce excessive N applications. VRF seeks to spatially vary fertiliser input based on estimated crop requirements, however a major challenge in the operational deployment of VRF systems is the automated processing of large amounts of sensor data in real-time. Machine learning techniques have shown promise in their ability to process these large, high-velocity data streams, and to produce accurate predictions. This paper will use a simulation testing methodology on real hardware to compare two existing machine learning algorithms and a prototype implementation of a newly developed algorithm for their applicability to VRF application. | en |
dc.language | en | en |
dc.publisher | New Zealand Institute for Plant & Food Research Ltd | en |
dc.relation.ispartof | Proceedings of the 7th Asian-Australasian Conference on Precision Agriculture | en |
dc.rights | Attribution 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.title | Hardware and embedded algorithms for real time variable rate fertiliser applications | en |
dc.type | Conference Publication | en |
dc.relation.conference | ACPA 2017: 7th Asian-Australasian Conference on Precision Agriculture | en |
dc.identifier.doi | 10.5281/zenodo.895528 | en |
dcterms.accessRights | Gold | en |
local.contributor.firstname | Joshua | en |
local.contributor.firstname | Greg | en |
local.contributor.firstname | Troy | en |
local.contributor.firstname | Bernard | en |
local.contributor.firstname | David W | en |
local.subject.for2008 | 070106 Farm Management, Rural Management and Agribusiness | en |
local.subject.for2008 | 079902 Fertilisers and Agrochemicals (incl. Application) | en |
local.subject.for2008 | 170203 Knowledge Representation and Machine Learning | en |
local.subject.seo2008 | 960904 Farmland, Arable Cropland and Permanent Cropland Land Management | en |
local.subject.seo2008 | 890201 Application Software Packages (excl. Computer Games) | en |
local.profile.school | School of Science and Technology | en |
local.profile.school | School of Science and Technology | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | jstover2@une.edu.au | en |
local.profile.email | gfalzon2@une.edu.au | en |
local.profile.email | troy.jensen@usq.edu.au | en |
local.profile.email | bernard.schroeder@usq.edu.au | en |
local.profile.email | dlamb@une.edu.au | en |
local.output.category | E2 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.date.conference | 16th - 18th October, 2017 | en |
local.conference.place | Hamilton, New Zealand | en |
local.publisher.place | Hamilton, New Zealand | en |
local.format.startpage | 1 | en |
local.format.endpage | 8 | en |
local.peerreviewed | Yes | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | Stover | en |
local.contributor.lastname | Falzon | en |
local.contributor.lastname | Jensen | en |
local.contributor.lastname | Schroeder | en |
local.contributor.lastname | Lamb | en |
dc.identifier.staff | une-id:jstover2 | en |
dc.identifier.staff | une-id:gfalzon2 | en |
dc.identifier.staff | une-id:dlamb | en |
local.profile.orcid | 0000-0002-1989-9357 | en |
local.profile.orcid | 0000-0002-2917-2231 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/27084 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Hardware and embedded algorithms for real time variable rate fertiliser applications | en |
local.relation.fundingsourcenote | Regional University Network Precision Agriculture Flagship (RUNPAF) scholarship | en |
local.output.categorydescription | E2 Non-Refereed Scholarly Conference Publication | en |
local.relation.url | https://precisionagriculture.org.nz/events/pa17-the-international-tri-conference-for-precision-agriculture-in-2017/ | en |
local.relation.url | https://zenodo.org/record/1012620 | en |
local.conference.details | ACPA 2017: 7th Asian-Australasian Conference on Precision Agriculture, Hamilton, New Zealand, 16th - 18th October, 2017 | en |
local.search.author | Stover, Joshua | en |
local.search.author | Falzon, Greg | en |
local.search.author | Jensen, Troy | en |
local.search.author | Schroeder, Bernard | en |
local.search.author | Lamb, David W | en |
local.uneassociation | Unknown | en |
local.year.published | 2017 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/352a4f6b-9279-4c9a-b210-53221bd1f989 | en |
local.subject.for2020 | 300411 Fertilisers (incl. application) | en |
local.subject.for2020 | 461106 Semi- and unsupervised learning | en |
local.subject.for2020 | 300208 Farm management, rural management and agribusiness | en |
local.subject.seo2020 | 220401 Application software packages | en |
local.subject.seo2020 | 180603 Evaluation, allocation, and impacts of land use | en |
dc.notification.token | ab6330fa-930b-40cd-a959-4121a718f5c4 | en |
local.codeupdate.date | 2022-02-14T08:44:44.071 | en |
local.codeupdate.eperson | rtobler@une.edu.au | en |
local.codeupdate.finalised | true | en |
local.original.for2020 | 300208 Farm management, rural management and agribusiness | en |
local.original.for2020 | 461105 Reinforcement learning | en |
local.original.for2020 | 300411 Fertilisers (incl. application) | en |
local.original.for2020 | 300410 Crop and pasture waste water use | en |
local.original.for2020 | 300401 Agrochemicals and biocides (incl. application) | en |
local.original.for2020 | 461106 Semi- and unsupervised learning | en |
local.original.seo2020 | 180607 Terrestrial erosion | en |
local.original.seo2020 | 180603 Evaluation, allocation, and impacts of land use | en |
local.original.seo2020 | 220401 Application software packages | en |
local.date.start | 2017-10-16 | - |
local.date.end | 2017-10-18 | - |
Appears in Collections: | Conference Publication School of Science and Technology |
Files in This Item:
File | Description | Size | Format |
---|
Page view(s)
1,756
checked on Mar 8, 2023
Download(s)
6
checked on Mar 8, 2023
This item is licensed under a Creative Commons License