Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/26915
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKhansefid, Men
dc.contributor.authorBolormaa, Sen
dc.contributor.authorSwan, A Aen
dc.contributor.authorvan der Werf, J H Jen
dc.contributor.authorMoghaddar, Nen
dc.contributor.authorDuijvesteijn, Nen
dc.contributor.authorDaetwyler, H Den
dc.contributor.authorMacLeod, I Men
dc.date.accessioned2019-05-23T03:29:43Z-
dc.date.available2019-05-23T03:29:43Z-
dc.date.issued2018-
dc.identifier.citationProceedings of the World Congress on Genetics Applied to Livestock Production, v.11, p. 1-8en
dc.identifier.urihttps://hdl.handle.net/1959.11/26915-
dc.description.abstractThe accuracy of genomic predictions could be potentially improved by creating competitively priced low to medium density custom SNP chips, that include sequence SNPs strongly associated with a range of economically important traits. The SheepGenomesDB and Australia Sheep CRC have recently completed whole-genome sequencing of 726 sheep, enabling the imputation of approximately 46,000 Australian sheep of multiple breeds and crosses that were previously genotyped with lower density SNP chips. Subsets of these sheep are recorded for a range of growth and meat quality traits. We used this dataset to discover putative causal SNPs associated with these traits and then combined these SNPs with the 50k SNP chip genotypes for Bayesian genomic prediction. The genomic predictions were validated in purebred Merino and Border Leicester × Merino crossbreds. On average there was a 5% increase in the accuracy of genomic breeding values by adding the top sequence SNPs to the 50k SNP genotypes compared to using only the 50k genotypes.en
dc.languageenen
dc.publisherMassey Universityen
dc.relation.ispartofProceedings of the World Congress on Genetics Applied to Livestock Productionen
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleExploiting sequence variants for genomic prediction in Australian sheep using Bayesian modelsen
dc.typeConference Publicationen
dc.relation.conferenceWCGALP 2018: 11th World Congress on Genetics Applied to Livestock Productionen
dcterms.accessRightsUNE Greenen
local.contributor.firstnameMen
local.contributor.firstnameSen
local.contributor.firstnameA Aen
local.contributor.firstnameJ H Jen
local.contributor.firstnameNen
local.contributor.firstnameNen
local.contributor.firstnameH Den
local.contributor.firstnameI Men
local.subject.for2008070201 Animal Breedingen
local.subject.seo2008830310 Sheep - Meaten
local.profile.schoolAnimal Genetics and Breeding Uniten
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.emailaswan@une.edu.auen
local.profile.emailjvanderw@une.edu.auen
local.profile.emailnmoghad4@une.edu.auen
local.profile.emailnduijves@une.edu.auen
local.output.categoryE1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.date.conference11th - 16th February, 2018en
local.conference.placeAuckland, New Zealanden
local.publisher.placePalmerston North, New Zealanden
local.identifier.runningnumber253en
local.format.startpage1en
local.format.endpage8en
local.url.openhttp://www.wcgalp.org/proceedings/2018/exploiting-sequence-variants-genomic-prediction-australian-sheep-using-bayesianen
local.peerreviewedYesen
local.identifier.volume11en
local.access.fulltextYesen
local.contributor.lastnameKhansefiden
local.contributor.lastnameBolormaaen
local.contributor.lastnameSwanen
local.contributor.lastnamevan der Werfen
local.contributor.lastnameMoghaddaren
local.contributor.lastnameDuijvesteijnen
local.contributor.lastnameDaetwyleren
local.contributor.lastnameMacLeoden
dc.identifier.staffune-id:aswanen
dc.identifier.staffune-id:jvanderwen
dc.identifier.staffune-id:nmoghad4en
dc.identifier.staffune-id:nduijvesen
local.profile.orcid0000-0001-8048-3169en
local.profile.orcid0000-0003-2512-1696en
local.profile.orcid0000-0002-3600-7752en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/26915en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleExploiting sequence variants for genomic prediction in Australian sheep using Bayesian modelsen
local.output.categorydescriptionE1 Refereed Scholarly Conference Publicationen
local.relation.urlhttp://www.wcgalp.org/proceedings/2018en
local.conference.detailsWCGALP 2018: 11th World Congress on Genetics Applied to Livestock Production, Auckland, New Zealand, 11th - 16th February, 2018en
local.search.authorKhansefid, Men
local.search.authorBolormaa, Sen
local.search.authorSwan, A Aen
local.search.authorvan der Werf, J H Jen
local.search.authorMoghaddar, Nen
local.search.authorDuijvesteijn, Nen
local.search.authorDaetwyler, H Den
local.search.authorMacLeod, I Men
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/6cd33a79-b1a1-42f6-a74a-a6a4bd5991ceen
local.uneassociationUnknownen
local.year.published2018en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/6cd33a79-b1a1-42f6-a74a-a6a4bd5991ceen
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/6cd33a79-b1a1-42f6-a74a-a6a4bd5991ceen
local.subject.for2020300305 Animal reproduction and breedingen
local.subject.seo2020100412 Sheep for meaten
local.date.start2018-02-11-
local.date.end2018-02-16-
Appears in Collections:Conference Publication
School of Environmental and Rural Science
Files in This Item:
3 files
File Description SizeFormat 
openpublished/ExploitingSwanVanDeerWerfMoghaddarDuijvesteijn2018ConferencePublication.pdfPublished version1.25 MBAdobe PDF
Download Adobe
View/Open
Show simple item record

Page view(s)

2,420
checked on Jun 30, 2024

Download(s)

84
checked on Jun 30, 2024
Google Media

Google ScholarTM

Check


This item is licensed under a Creative Commons License Creative Commons