Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/26405
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBoerner, Vinzenten
dc.contributor.authorWittenburg, Dorteen
dc.date.accessioned2019-03-04T04:29:38Z-
dc.date.available2019-03-04T04:29:38Z-
dc.date.issued2018-05-29-
dc.identifier.citationFrontiers in Genetics, v.9, p. 1-14en
dc.identifier.issn1664-8021en
dc.identifier.urihttps://hdl.handle.net/1959.11/26405-
dc.description.abstractQuantifying the population stratification in genotype samples has become a standard procedure for data manipulation before conducting genome wide association studies, as well as for tracing patterns of migration in humans and animals, and for inference about extinct founder populations. The most widely used approach capable of providing biologically interpretable results is a likelihood formulation which allows for estimation of founder genome proportions and founder allele frequency conditional on the observed genotypes. However, if founder allele frequencies are known and samples are dominated by admixed genotypes this approach may lead to biased inference. In addition, processing time increases drastically with the number of genetic markers. This article describes a simplified approach for obtaining biologically meaningful measures of population stratification at the genotype level conditional on known founder allele frequencies. It was tested on cattle and human data sets with 4,022 and 150,000 genetic markers, respectively, and proved to be very accurate in situations where founder poplations were correctly specified, or under-, over-, and miss-specified. Moreover, processing time was only marginally affected by an increase in the number of markers.en
dc.languageenen
dc.publisherFrontiers Research Foundationen
dc.relation.ispartofFrontiers in Geneticsen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleOn Estimation of Genome Composition in Genetically Admixed Individuals Using Constrained Genomic Regressionen
dc.typeJournal Articleen
dc.identifier.doi10.3389/fgene.2018.00185en
dc.identifier.pmid29896217en
dcterms.accessRightsGolden
local.contributor.firstnameVinzenten
local.contributor.firstnameDorteen
local.subject.for2008060412 Quantitative Genetics (incl. Disease and Trait Mapping Genetics)en
local.subject.seo2008830301 Beef Cattleen
local.profile.schoolAnimal Genetics and Breeding Uniten
local.profile.emailvboerner@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeSwitzerlanden
local.identifier.runningnumber185en
local.format.startpage1en
local.format.endpage14en
local.peerreviewedYesen
local.identifier.volume9en
local.access.fulltextYesen
local.contributor.lastnameBoerneren
local.contributor.lastnameWittenburgen
dc.identifier.staffune-id:vboerneren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/26405en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleOn Estimation of Genome Composition in Genetically Admixed Individuals Using Constrained Genomic Regressionen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorBoerner, Vinzenten
local.search.authorWittenburg, Dorteen
local.uneassociationUnknownen
local.identifier.wosid000433386500001en
local.year.published2018en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/852cb1ea-68c2-4529-b1d1-f6a11f1a75f8en
local.subject.for2020310506 Gene mappingen
local.subject.seo2020100401 Beef cattleen
Appears in Collections:Animal Genetics and Breeding Unit (AGBU)
Journal Article
Files in This Item:
2 files
File Description SizeFormat 
Show simple item record

SCOPUSTM   
Citations

4
checked on Jan 4, 2025

Page view(s)

2,258
checked on May 19, 2024

Download(s)

2
checked on May 19, 2024
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons