Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/26378
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChatbri, Houssemen
dc.contributor.authorKameyama, Keisukeen
dc.contributor.authorKwan, Paulen
dc.contributor.authorLittle, Suzanneen
dc.contributor.authorO'Connor, Noel Een
dc.date.accessioned2019-02-28T22:53:38Z-
dc.date.available2019-02-28T22:53:38Z-
dc.date.issued2018-11-
dc.identifier.citationMultimedia Tools and Applications, 77(21), p. 28925-28948en
dc.identifier.issn1573-7721en
dc.identifier.issn1380-7501en
dc.identifier.urihttps://hdl.handle.net/1959.11/26378-
dc.description.abstractWe introduce a shape descriptor that extracts keypoints from binary images and automatically detects the salient ones among them. The proposed descriptor operates as follows: First, the contours of the image are detected and an image transformation is used to generate background information. Next, pixels of the transformed image that have specific characteristics in their local areas are used to extract keypoints. Afterwards, the most salient keypoints are automatically detected by filtering out redundant and sensitive ones. Finally, a feature vector is calculated for each keypoint by using the distribution of contour points in its local area. The proposed descriptor is evaluated using public datasets of silhouette images, handwritten math expressions, hand-drawn diagram sketches, and noisy scanned logos. Experimental results show that the proposed descriptor compares strongly against state of the art methods, and that it is reliable when applied on challenging images such as fluctuated handwriting and noisy scanned images. Furthermore, we integrate our descriptor in a content-based document image retrieval system using sketch queries as a step for query and candidate occurrence matching, and we show that it leads to a significant boost in retrieval performances.en
dc.languageenen
dc.publisherSpringer New York LLCen
dc.relation.ispartofMultimedia Tools and Applicationsen
dc.titleA novel shape descriptor based on salient keypoints detection for binary image matching and retrievalen
dc.typeJournal Articleen
dc.identifier.doi10.1007/s11042-018-6054-xen
dc.subject.keywordsMultimedia Programmingen
dc.subject.keywordsImage Processingen
dc.subject.keywordsPattern Recognition and Data Miningen
local.contributor.firstnameHoussemen
local.contributor.firstnameKeisukeen
local.contributor.firstnamePaulen
local.contributor.firstnameSuzanneen
local.contributor.firstnameNoel Een
local.subject.for2008080109 Pattern Recognition and Data Miningen
local.subject.for2008080305 Multimedia Programmingen
local.subject.for2008080106 Image Processingen
local.subject.seo2008890201 Application Software Packages (excl. Computer Games)en
local.subject.seo2008890301 Electronic Information Storage and Retrieval Servicesen
local.subject.seo2008970108 Expanding Knowledge in the Information and Computing Sciencesen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailwkwan2@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.identifier.epublicationsrecordune-20180513-112443en
local.publisher.placeUnited States of Americaen
local.format.startpage28925en
local.format.endpage28948en
local.peerreviewedYesen
local.identifier.volume77en
local.identifier.issue21en
local.contributor.lastnameChatbrien
local.contributor.lastnameKameyamaen
local.contributor.lastnameKwanen
local.contributor.lastnameLittleen
local.contributor.lastnameO'Connoren
dc.identifier.staffune-id:wkwan2en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:-20180513-112443en
local.identifier.unepublicationidune:-20180513-112443en
local.date.onlineversion2018-05-10-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleA novel shape descriptor based on salient keypoints detection for binary image matching and retrievalen
local.relation.fundingsourcenoteMonbukagakusho Scholarship sponsored by the Japanese Government; Irish Research Council (IRC), Grant Number GOIPD/2016/61; Science Foundation Ireland (SFI), Grant Number SFI/12/RC/2289 (Insight Centre for Data Analytics)en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorChatbri, Houssemen
local.search.authorKameyama, Keisukeen
local.search.authorKwan, Paulen
local.search.authorLittle, Suzanneen
local.search.authorO'Connor, Noel Een
local.uneassociationUnknownen
local.identifier.wosid000446601500048en
local.year.available2018en
local.year.published2018en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/c94a799f-08ad-40a8-bc5c-01fadc06782den
local.subject.for2020460306 Image processingen
local.subject.seo2020220401 Application software packagesen
local.subject.seo2020220302 Electronic information storage and retrieval servicesen
local.subject.seo2020280115 Expanding knowledge in the information and computing sciencesen
dc.notification.tokenb928bb64-f044-4857-980e-f7905a9906acen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
4 files
File Description SizeFormat 
Show simple item record

SCOPUSTM   
Citations

8
checked on Jan 18, 2025

Page view(s)

1,532
checked on Apr 21, 2024

Download(s)

10
checked on Apr 21, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.