Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/23302
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Karpov, A V | en |
dc.contributor.author | Kazakov, D V | en |
dc.contributor.author | Pavlov, Konstantin M | en |
dc.contributor.author | Punegov, V I | en |
dc.date.accessioned | 2018-06-19T10:57:00Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Известия Коми научного центра УрО РАН, 33(1), p. 5-12 | en |
dc.identifier.issn | 1994-5655 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/23302 | - |
dc.language | ru | en |
dc.publisher | Komi Science Centre of the Ural Division of the Russian Academy of Sciences | en |
dc.relation.ispartof | Известия Коми научного центра УрО РАН | en |
dc.title | ТЕОРИЯ РЕНТГЕНОВСКОЙ ДИФРАКЦИИ НА КРИСТАЛЛЕ С ПОВЕРХНОСТНЫМ РЕЛЬЕФОМ | en |
dc.type | Journal Article | en |
dc.subject.keywords | Condensed Matter Characterisation Technique Development | en |
dc.subject.keywords | Optical Physics | en |
dc.subject.keywords | Condensed Matter Physics | en |
local.contributor.firstname | A V | en |
local.contributor.firstname | D V | en |
local.contributor.firstname | Konstantin M | en |
local.contributor.firstname | V I | en |
local.subject.for2008 | 020499 Condensed Matter Physics not elsewhere classified | en |
local.subject.for2008 | 020401 Condensed Matter Characterisation Technique Development | en |
local.subject.for2008 | 020599 Optical Physics not elsewhere classified | en |
local.subject.seo2008 | 970102 Expanding Knowledge in the Physical Sciences | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | karpov@ipm.komisc.ru | en |
local.profile.email | kpavlov@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.identifier.epublicationsrecord | une-20180424-110010 | en |
local.publisher.place | Russia | en |
local.format.startpage | 5 | en |
local.format.endpage | 12 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 33 | en |
local.identifier.issue | 1 | en |
local.contributor.lastname | Karpov | en |
local.contributor.lastname | Kazakov | en |
local.contributor.lastname | Pavlov | en |
local.contributor.lastname | Punegov | en |
dc.title.translated | Theory of X-Ray Diffraction on a Crystall with Surface Relief | en |
dc.identifier.staff | une-id:kpavlov | en |
local.booktitle.translated | Proceedings of the Komi Science Centre of the Ural Division of the Russian Academy of Sciences | en |
local.profile.orcid | 0000-0002-1756-4406 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:23484 | en |
local.identifier.handle | https://hdl.handle.net/1959.11/23302 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.abstract.english | It is well known that surface diffraction gratings are commonly used in X-ray optics [1], opto- and nanoelectronics [2]. Surface diffraction gratings are an optical component with a periodic structure formed on crystal surface. Thin 0.2 μm surface gratings with period of 10-20 μm were for the first time studied by Aristov et al. [3,4] on a triple-axis diffractometer. Results of X-ray diffraction on InP and GaAs crystals with significantly shorter surface relief period were reported in papers [5-7]. The purpose of the current paper is to provide further development of the coplanar X-ray diffraction theory on surface diffraction gratings. The problem is formulated in general within the framework of two-wave dynamic X-ray diffraction. Stroke profile can be specified in any shape. Since the period and the thickness of the surface relief do not exceed 1 μm, we can study it using the kinematic approximation. New stroke profile models for specific surface reliefs are proposed. These models were used to solve the X-ray diffraction problem analytically in the kinematic approximation. Boundaries of applicability for every solution were indicated. Those solutions may be used to reconstruct profile models from experimental data of high-resolution X-ray diffraction. Results of the current work are applicable to the X-ray and neutron optic studies. | en |
local.title.maintitle | ТЕОРИЯ РЕНТГЕНОВСКОЙ ДИФРАКЦИИ НА КРИСТАЛЛЕ С ПОВЕРХНОСТНЫМ РЕЛЬЕФОМ | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.relation.url | http://www.izvestia.komisc.ru/archive/i33_ann.files/karpov.html | en |
local.search.author | Karpov, A V | en |
local.search.author | Kazakov, D V | en |
local.search.author | Pavlov, Konstantin M | en |
local.search.author | Punegov, V I | en |
local.uneassociation | Unknown | en |
local.year.published | 2018 | en |
local.subject.for2020 | 510401 Condensed matter characterisation technique development | en |
local.subject.seo2020 | 280120 Expanding knowledge in the physical sciences | en |
dc.notification.token | d2b8c554-721b-46cd-9b23-1bb49f71ad4e | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Description | Size | Format |
---|
Page view(s)
1,596
checked on Apr 7, 2024
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.