Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/23044
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Zhang, Xuemei | en |
dc.contributor.author | Du, Yihong | en |
dc.date.accessioned | 2018-05-20T16:28:00Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Calculus of Variations and Partial Differential Equations, 57(2), p. 1-24 | en |
dc.identifier.issn | 1432-0835 | en |
dc.identifier.issn | 0944-2669 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/23044 | - |
dc.description.abstract | In this paper we give sharp conditions on K(x) and f (u) for the existence of strictly convex solutions to the boundary blow-up Monge-Ampère problem M[u](x) = K(x) f (u) for x ∈ Ω, u(x)→+∞ as dist(x, ∂Ω) → 0. Here M[u] = det (uxi x j ) is the Monge-Ampère operator, and Ω is a smooth, bounded, strictly convex domain in RN (N ≥ 2). Further results are obtained for the special case that Ω is a ball. Our approach is largely based on the construction of suitable sub- and super-solutions. | en |
dc.language | en | en |
dc.publisher | Springer | en |
dc.relation.ispartof | Calculus of Variations and Partial Differential Equations | en |
dc.title | Sharp conditions for the existence of boundary blow-up solutions to the Monge–Ampère equation | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1007/s00526-018-1312-3 | en |
dc.subject.keywords | Partial Differential Equations | en |
local.contributor.firstname | Xuemei | en |
local.contributor.firstname | Yihong | en |
local.subject.for2008 | 010110 Partial Differential Equations | en |
local.subject.seo2008 | 970101 Expanding Knowledge in the Mathematical Sciences | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | ydu@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.identifier.epublicationsrecord | une-chute-20180302-120018 | en |
local.publisher.place | Germany | en |
local.identifier.runningnumber | 30 | en |
local.format.startpage | 1 | en |
local.format.endpage | 24 | en |
local.identifier.scopusid | 85042125503 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 57 | en |
local.identifier.issue | 2 | en |
local.contributor.lastname | Zhang | en |
local.contributor.lastname | Du | en |
dc.identifier.staff | une-id:ydu | en |
local.profile.orcid | 0000-0002-1235-0636 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:23228 | en |
local.identifier.handle | https://hdl.handle.net/1959.11/23044 | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Sharp conditions for the existence of boundary blow-up solutions to the Monge–Ampère equation | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.relation.grantdescription | ARC/DP170103087 | en |
local.search.author | Zhang, Xuemei | en |
local.search.author | Du, Yihong | en |
local.uneassociation | Unknown | en |
local.identifier.wosid | 000431004800012 | en |
local.year.published | 2018 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/7d73a81d-4b2c-47a7-aa60-8208e2e04600 | en |
local.subject.for2020 | 490410 Partial differential equations | en |
local.subject.seo2020 | 280118 Expanding knowledge in the mathematical sciences | en |
local.codeupdate.date | 2021-11-05T10:56:20.712 | en |
local.codeupdate.eperson | ydu@une.edu.au | en |
local.codeupdate.finalised | true | en |
local.original.for2020 | 490410 Partial differential equations | en |
local.original.seo2020 | 280118 Expanding knowledge in the mathematical sciences | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Description | Size | Format |
---|
SCOPUSTM
Citations
45
checked on Nov 30, 2024
Page view(s)
1,864
checked on Feb 25, 2024
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.