Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/22890
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Eskandari, Samieh | en |
dc.contributor.author | Guppy, Christopher | en |
dc.contributor.author | Knox, Oliver | en |
dc.contributor.author | Backhouse, David | en |
dc.contributor.author | Haling, Rebecca E | en |
dc.date.accessioned | 2018-04-23T15:55:00Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Applied Soil Ecology, v.126, p. 199-201 | en |
dc.identifier.issn | 1873-0272 | en |
dc.identifier.issn | 0929-1393 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/22890 | - |
dc.description.abstract | Soil sodicity degrades land and more than half of the world's sodic soils are in Australia. Farmers in Australia produce and export cotton grown in sodic soils. Undesirable physicochemical constraints (e.g. high pH, high bulk density, low porosity and reduced oxygen content) are associated with sodic soils and may adversely affect microbial interactions in the rhizosphere, including mycorrhizal associations. This viewpoint focusses on facts and gaps in our knowledge about mycorrhizal associations in sodic soils, with special attention to cotton systems. We highlight the difference between saline and sodic soil conditions and the impacts they may have on host plant-mycorrhizae symbiosis. This viewpoint identifies the need for more research on the potential impact of sodicity on mycorrhizal species diversity, functionality and benefits to crop growth. Changes in agronomic management strategies to maximize mycorrhizal symbiosis benefits are suggested, especially for those plant species, like cotton, that are highly reliant on mycorrhizal symbiosis for optimal growth and nutrient uptake. | en |
dc.language | en | en |
dc.publisher | Elsevier BV | en |
dc.relation.ispartof | Applied Soil Ecology | en |
dc.title | Understanding the impact of soil sodicity on mycorrhizal symbiosis: Some facts and gaps identified from cotton systems | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1016/j.apsoil.2018.01.008 | en |
dc.subject.keywords | Agronomy | en |
dc.subject.keywords | Soil Chemistry (excl. Carbon Sequestration Science) | en |
dc.subject.keywords | Soil Biology | en |
local.contributor.firstname | Samieh | en |
local.contributor.firstname | Christopher | en |
local.contributor.firstname | Oliver | en |
local.contributor.firstname | David | en |
local.contributor.firstname | Rebecca E | en |
local.subject.for2008 | 070302 Agronomy | en |
local.subject.for2008 | 050303 Soil Biology | en |
local.subject.for2008 | 050304 Soil Chemistry (excl. Carbon Sequestration Science) | en |
local.subject.seo2008 | 820301 Cotton | en |
local.profile.school | School of Environmental and Rural Science | en |
local.profile.school | School of Environmental and Rural Science | en |
local.profile.school | School of Environmental and Rural Science | en |
local.profile.email | cguppy@une.edu.au | en |
local.profile.email | oknox@une.edu.au | en |
local.profile.email | dbackhou@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.identifier.epublicationsrecord | une-chute-20180416-101729 | en |
local.publisher.place | Netherlands | en |
local.format.startpage | 199 | en |
local.format.endpage | 201 | en |
local.identifier.scopusid | 85042358677 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 126 | en |
local.title.subtitle | Some facts and gaps identified from cotton systems | en |
local.contributor.lastname | Eskandari | en |
local.contributor.lastname | Guppy | en |
local.contributor.lastname | Knox | en |
local.contributor.lastname | Backhouse | en |
local.contributor.lastname | Haling | en |
dc.identifier.staff | une-id:cguppy | en |
dc.identifier.staff | une-id:oknox | en |
dc.identifier.staff | une-id:dbackhou | en |
local.profile.orcid | 0000-0001-7274-607X | en |
local.profile.orcid | 0000-0002-0414-5771 | en |
local.profile.orcid | 0000-0003-0663-6002 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:23074 | en |
local.identifier.handle | https://hdl.handle.net/1959.11/22890 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Understanding the impact of soil sodicity on mycorrhizal symbiosis | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Eskandari, Samieh | en |
local.search.author | Guppy, Christopher | en |
local.search.author | Knox, Oliver | en |
local.search.author | Backhouse, David | en |
local.search.author | Haling, Rebecca E | en |
local.uneassociation | Unknown | en |
local.identifier.wosid | 000428332500023 | en |
local.year.published | 2018 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/7b3b9423-3b43-4188-b2f6-391aeba484e5 | en |
local.subject.for2020 | 300403 Agronomy | en |
local.subject.for2020 | 410603 Soil biology | en |
local.subject.for2020 | 410604 Soil chemistry and soil carbon sequestration (excl. carbon sequestration science) | en |
local.subject.seo2020 | 260602 Cotton | en |
Appears in Collections: | Journal Article School of Environmental and Rural Science |
Files in This Item:
File | Description | Size | Format |
---|
SCOPUSTM
Citations
8
checked on Nov 30, 2024
Page view(s)
1,630
checked on Feb 25, 2024
Download(s)
2
checked on Feb 25, 2024
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.