Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/21204
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBoerner, Vinzenten
dc.contributor.authorTier, Bruceen
dc.date.accessioned2017-06-01T14:21:00Z-
dc.date.issued2016-
dc.identifier.citationGenetics Selection Evolution, v.48, p. 1-5en
dc.identifier.issn1297-9686en
dc.identifier.issn0999-193Xen
dc.identifier.urihttps://hdl.handle.net/1959.11/21204-
dc.description.abstractBackground: The advent of genomic marker data has triggered the development of various Bayesian algorithms for estimation of marker effects, but software packages implementing these algorithms are not readily available, or are limited to a single algorithm, uni-variate analysis or a limited number of factors. Moreover, script based environments like R may not be able to handle large-scale genomic data or exploit model properties which save computing time or memory (RAM). Results: BESSiE is a software designed for best linear unbiased prediction (BLUP) and Bayesian Markov chain Monte Carlo analysis of linear mixed models allowing for continuous and/or categorical multivariate, repeated and missing observations, various random and fixed factors and large-scale genomic marker data. BESSiE covers the algorithms genomic BLUP, single nucleotide polymorphism (SNP)-BLUP, BayesA, BayesB, BayesCπ and BayesR for estimating marker effects and/or summarised genomic values. BESSiE is parameter file driven, command line operated and available for Linux environments. BESSiE executable, manual and a collection of examples can be downloaded http:// turing.une.edu.au/~agbu-admin/BESSiE/. Conclusion: BESSiE allows the user to compare several different Bayesian and BLUP algorithms for estimating marker effects from large data sets in complex models with the same software by small alterations in the parameter file. The program has no hard-coded limitations for number of factors, observations or genetic markers.en
dc.languageenen
dc.publisherBioMed Central Ltden
dc.relation.ispartofGenetics Selection Evolutionen
dc.titleBESSiE: a software for linear model BLUP and Bayesian MCMC analysis of large-scale genomic dataen
dc.typeJournal Articleen
dc.identifier.doi10.1186/s12711-016-0241-xen
dcterms.accessRightsGolden
dc.subject.keywordsGenomicsen
dc.subject.keywordsQuantitative Genetics (incl. Disease and Trait Mapping Genetics)en
dc.subject.keywordsPopulation, Ecological and Evolutionary Geneticsen
local.contributor.firstnameVinzenten
local.contributor.firstnameBruceen
local.subject.for2008060412 Quantitative Genetics (incl. Disease and Trait Mapping Genetics)en
local.subject.for2008060408 Genomicsen
local.subject.for2008060411 Population, Ecological and Evolutionary Geneticsen
local.subject.seo2008970107 Expanding Knowledge in the Agricultural and Veterinary Sciencesen
local.subject.seo2008970106 Expanding Knowledge in the Biological Sciencesen
local.subject.seo2008970108 Expanding Knowledge in the Information and Computing Sciencesen
local.profile.schoolAnimal Genetics and Breeding Uniten
local.profile.schoolAnimal Genetics and Breeding Uniten
local.profile.emailvboerner@une.edu.auen
local.profile.emailbtier@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.identifier.epublicationsrecordune-chute-20170601-132001en
local.publisher.placeUnited Kingdomen
local.identifier.runningnumber63en
local.format.startpage1en
local.format.endpage5en
local.identifier.scopusid84986910782en
local.peerreviewedYesen
local.identifier.volume48en
local.title.subtitlea software for linear model BLUP and Bayesian MCMC analysis of large-scale genomic dataen
local.access.fulltextYesen
local.contributor.lastnameBoerneren
local.contributor.lastnameTieren
dc.identifier.staffune-id:vboerneren
dc.identifier.staffune-id:btieren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:21395en
local.identifier.handlehttps://hdl.handle.net/1959.11/21204en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleBESSiEen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorBoerner, Vinzenten
local.search.authorTier, Bruceen
local.uneassociationUnknownen
local.identifier.wosid000382907800001en
local.year.published2016en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/709f816e-33c3-4170-a9e0-6f6e799a2647en
local.subject.for2020310506 Gene mappingen
local.subject.for2020310509 Genomicsen
local.subject.seo2020280101 Expanding knowledge in the agricultural, food and veterinary sciencesen
local.subject.seo2020280102 Expanding knowledge in the biological sciencesen
local.subject.seo2020280115 Expanding knowledge in the information and computing sciencesen
Appears in Collections:Animal Genetics and Breeding Unit (AGBU)
Journal Article
Files in This Item:
2 files
File Description SizeFormat 
Show simple item record

SCOPUSTM   
Citations

14
checked on Aug 24, 2024

Page view(s)

2,566
checked on Aug 25, 2024

Download(s)

4
checked on Aug 25, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.