Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/20291
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSchaefer, Michael Ten
dc.contributor.authorLamb, Daviden
dc.date.accessioned2017-03-29T15:37:00Z-
dc.date.issued2016-
dc.identifier.citationRemote Sensing, 8(2), p. 1-10en
dc.identifier.issn2072-4292en
dc.identifier.urihttps://hdl.handle.net/1959.11/20291-
dc.description.abstractThe total biomass of a tall fescue (Festuca arundinacea var. Fletcher) pasture was assessed by using a vehicle mounted light detection and ranging (LiDAR) unit to derive canopy height and an active optical reflectance sensor to determine the spectro-optical reflectance index, normalized difference vegetation index (NDVI). In a random plot design, measurements of NDVI and pasture height were combined to estimate biomass with a root mean square error of prediction (RMSEP) equal to ±455.28 kg green dry matter (GDM)/ha, over a range of 286 kg to 3933 kg GDM/ha. The combination of NDVI and height measurements were observed to be more accurate in assessing total biomass than just the NDVI (RMSEP ±846.51 kg/ha) and height (RMSEP ±708.13 kg/ha). Based on the results of the study it was concluded the use of combined LiDAR and active optical reflectance sensors can help unlock the complex interrelationship between green fraction and biomass in swards containing both green and senescent material.en
dc.languageenen
dc.publisherMDPI AGen
dc.relation.ispartofRemote Sensingen
dc.titleA Combination of Plant NDVI and LiDAR Measurements Improve the Estimation of Pasture Biomass in Tall Fescue (Festuca arundinacea var. Fletcher)en
dc.typeJournal Articleen
dc.identifier.doi10.3390/rs8020109en
dcterms.accessRightsGolden
dc.subject.keywordsAgricultural Spatial Analysis and Modellingen
local.contributor.firstnameMichael Ten
local.contributor.firstnameDaviden
local.subject.for2008070104 Agricultural Spatial Analysis and Modellingen
local.subject.seo2008830406 Sown Pastures (excl. Lucerne)en
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailmschaef3@une.edu.auen
local.profile.emaildlamb@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.identifier.epublicationsrecordune-20170308-131113en
local.publisher.placeSwitzerlanden
local.identifier.runningnumber109en
local.format.startpage1en
local.format.endpage10en
local.identifier.scopusid84962608863en
local.peerreviewedYesen
local.identifier.volume8en
local.identifier.issue2en
local.access.fulltextYesen
local.contributor.lastnameSchaeferen
local.contributor.lastnameLamben
dc.identifier.staffune-id:mschaef3en
dc.identifier.staffune-id:dlamben
local.profile.orcid0000-0002-2917-2231en
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:20489en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleA Combination of Plant NDVI and LiDAR Measurements Improve the Estimation of Pasture Biomass in Tall Fescue (Festuca arundinacea var. Fletcher)en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorSchaefer, Michael Ten
local.search.authorLamb, Daviden
local.uneassociationUnknownen
local.identifier.wosid000371898800031en
local.year.published2016en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/7f41945f-4f1b-4d52-b4e1-60e0d8a7a4d4en
local.subject.for2020300206 Agricultural spatial analysis and modellingen
local.subject.seo2020100505 Sown pastures (excl. lucerne)en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
Show simple item record

SCOPUSTM   
Citations

89
checked on May 18, 2024

Page view(s)

2,774
checked on Jun 2, 2024

Download(s)

2
checked on Jun 2, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.