Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/16923
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGlover, Stephenen
dc.contributor.authorRosser, Adam Aen
dc.date.accessioned2015-04-09T15:41:00Z-
dc.date.issued2015-
dc.identifier.citationJournal of Physical Organic Chemistry, 28(3), p. 215-222en
dc.identifier.issn1099-1395en
dc.identifier.issn0894-3230en
dc.identifier.urihttps://hdl.handle.net/1959.11/16923-
dc.description.abstractCalculations show that anomeric amides, amides bearing two electronegative atoms at the amide nitrogen, are unusual in structure and reactivity. They have much reduced amide resonance and also undergo the HERON reaction where anomeric destabilisation results in migration of one substituent from nitrogen to the carbonyl and formation of a resonancestabilised nitrene. B3LYP/6-31G(d) calculations demonstrate how resonance and HERON reactivity are affected by bisalkoxyl substitution and aminoalkoxyl substitution at nitrogen. Because transition state structures for model reactions of N,Ndimethoxyacetamide and N-methoxy-N-dimethylaminoacetamide demonstrate complete loss of amide resonance, the overall barriers to their HERON reactions can be partitioned into a resonance (RE) and a rearrangement component (Erearr). REs for both amides have been calculated by isodesmic methods (carbonyl substitution nitrogen atom replacement and a calibrated trans amidation method), and the reduction in total electronegativity at the amide nitrogen in N-methoxy-Ndimethylaminoacetamide results in an increase in amide resonance of about 4 kcal mol⁻¹ relative to N,N-dimethoxyacetamide (RE of 8.6 kcal mol⁻¹). However, there is a large decrease in Erearr by some 20 kcal mol⁻¹ to 10 kcal mol⁻¹. Changes in these energies are rationalised on the basis of an increase in amide nitrogen lone pair energy, which increases resonance, and a higher energy substituent nitrogen lone pair enhancing the nN-σ*NO anomeric effect and the ease of rearrangement. Intramolecular HERON reactions in twisted 1-aza-2-adamantanones, with no amide resonance, support the above variations in the rearrangement components to the activation barriers. On the strength of these findings, hydroxamic esters with only one oxygen at nitrogen will not undergo HERON reactions.en
dc.languageenen
dc.publisherJohn Wiley & Sons Ltden
dc.relation.ispartofJournal of Physical Organic Chemistryen
dc.titleHERON reactions of anomeric amides: understanding the driving forceen
dc.typeJournal Articleen
dc.identifier.doi10.1002/poc.3322en
dc.subject.keywordsPhysical Organic Chemistryen
dc.subject.keywordsTheoretical and Computational Chemistryen
local.contributor.firstnameStephenen
local.contributor.firstnameAdam Aen
local.subject.for2008030799 Theoretical and Computational Chemistry not elsewhere classifieden
local.subject.for2008030505 Physical Organic Chemistryen
local.subject.seo2008970103 Expanding Knowledge in the Chemical Sciencesen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailsglover@une.edu.auen
local.profile.emailarosser3@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.identifier.epublicationsrecordune-20140611-122546en
local.publisher.placeUnited Kingdomen
local.format.startpage215en
local.format.endpage222en
local.identifier.scopusid84906870996en
local.peerreviewedYesen
local.identifier.volume28en
local.identifier.issue3en
local.title.subtitleunderstanding the driving forceen
local.contributor.lastnameGloveren
local.contributor.lastnameRosseren
dc.identifier.staffune-id:sgloveren
dc.identifier.staffune-id:arosser3en
local.profile.orcid0000-0002-9344-8669en
local.profile.orcid0000-0002-4123-7704en
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:17136en
local.identifier.handlehttps://hdl.handle.net/1959.11/16923en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleHERON reactions of anomeric amidesen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorGlover, Stephenen
local.search.authorRosser, Adam Aen
local.uneassociationUnknownen
local.identifier.wosid000350470300009en
local.year.published2015en
local.subject.for2020340505 Physical organic chemistryen
local.subject.for2020340701 Computational chemistryen
local.subject.seo2020280105 Expanding knowledge in the chemical sciencesen
local.codeupdate.date2021-12-15T11:16:43.930en
local.codeupdate.epersonarosser3@une.edu.auen
local.codeupdate.finalisedtrueen
local.original.for2020undefineden
local.original.for2020340505 Physical organic chemistryen
local.original.seo2020280105 Expanding knowledge in the chemical sciencesen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
4 files
File Description SizeFormat 
Show simple item record

SCOPUSTM   
Citations

21
checked on May 4, 2024

Page view(s)

1,158
checked on Jun 11, 2023
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.