Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/14374
Title: Finite element micro-modelling of a human ankle bone reveals the importance of the trabecular network to mechanical performance: New methods for the generation and comparison of 3D models
Contributor(s): Parr, W C H (author); Chamoli, U (author); Jones, A (author); Walsh, W R (author); Wroe, Stephen  (author)orcid 
Publication Date: 2013
DOI: 10.1016/j.jbiomech.2012.11.011
Handle Link: https://hdl.handle.net/1959.11/14374
Abstract: Most modelling of whole bones does not incorporate trabecular geometry and treats bone as a solid non-porous structure. Some studies have modelled trabecular networks in isolation. One study has modelled the performance of whole human bones incorporating trabeculae, although this required considerable computer resources and purpose-written code. The difference between mechanical behaviour in models that incorporate trabecular geometry and non-porous models has not been explored. The ability to easily model trabecular networks may shed light on the mechanical consequences of bone loss in osteoporosis and remodelling after implant insertion. Here we present a Finite Element Analysis (FEA) of a human ankle bone that includes trabecular network geometry. We compare results from this model with results from non-porous models and introduce protocols achievable on desktop computers using widely available softwares. Our findings show that models including trabecular geometry are considerably stiffer than non-porous whole bone models wherein the non-cortical component has the same mass as the trabecular network, suggesting inclusion of trabecular geometry is desirable. We further present new methods for the construction and analysis of 3D models permitting: (1) construction of multi-property, non-porous models wherein cortical layer thickness can be manipulated; (2) maintenance of the same triangle network for the outer cortical bone surface in both 3D reconstruction and non-porous models allowing exact replication of load and restraint cases; and (3) creation of an internal landmark point grid allowing direct comparison between 3D FE Models (FEMs).
Publication Type: Journal Article
Source of Publication: Journal of Biomechanics, 46(1), p. 200-205
Publisher: Elsevier Ltd
Place of Publication: United Kingdom
ISSN: 1873-2380
0021-9290
Fields of Research (FoR) 2008: 040308 Palaeontology (incl Palynology)
060807 Animal Structure and Function
Fields of Research (FoR) 2020: 370506 Palaeontology (incl. palynology)
310911 Animal structure and function
Socio-Economic Objective (SEO) 2008: 970106 Expanding Knowledge in the Biological Sciences
970104 Expanding Knowledge in the Earth Sciences
Socio-Economic Objective (SEO) 2020: 280102 Expanding knowledge in the biological sciences
280107 Expanding knowledge in the earth sciences
Peer Reviewed: Yes
HERDC Category Description: C1 Refereed Article in a Scholarly Journal
Appears in Collections:Journal Article

Files in This Item:
2 files
File Description SizeFormat 
Show full item record

SCOPUSTM   
Citations

34
checked on Sep 14, 2024

Page view(s)

1,294
checked on Jul 23, 2023

Download(s)

2
checked on Jul 23, 2023
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.