Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/14213
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVerma, Nivaen
dc.contributor.authorLamb, Daviden
dc.contributor.authorReid, Nicken
dc.contributor.authorWilson, Brianen
dc.date.accessioned2014-03-12T10:26:00Z-
dc.date.issued2013-
dc.identifier.citationProceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), p. 192-195en
dc.identifier.isbn9781479911141en
dc.identifier.issn2153-7003en
dc.identifier.issn2153-6996en
dc.identifier.urihttps://hdl.handle.net/1959.11/14213-
dc.description.abstractHigh resolution remote sensing is a valuable tool for quantifying the distribution and density of trees with applications ranging from forest inventory, mapping urban parklands to understanding impacts on soil nutrient and carbon dynamics in farming land. The present study aims to compare the accuracy of different remote sensing techniques for delineating the tree cover in 50 cm resolution WorldView2 imagery of farmland. An image of farmland comprising pastures, remnant vegetation and woodland was initially classified into six classes, namely tree cover, bare soil, rock outcrop, natural pasture, degraded pasture and water body using different techniques. Pixel based classification based on all four available wavebands, were tested and an overall classification accuracy of 96.8% and 72.9 % were achieved for supervised and unsupervised techniques. Object based segmentation and subsequent classification yielded an improved overall classification accuracy of 98.3%. Addition of a fifth NDVI layer to the available wavebands did improve the accuracy but not significantly (98.1%, approx 1.3%). In addition to the improvements in overall classification accuracy, a visual inspections of results from the different methods indicated the object based method to yield a more 'realistic' result, avoiding the 'salt and pepper' effects apparent in the pixel-based methods. Overall, object based classification hence is considered more suitable for tree cover extraction from high resolution images.en
dc.languageenen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en
dc.relation.ispartofProceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS)en
dc.titleTree Cover Extraction from 50 cm Worldview2 Imagery: A Comparison of Image Processing Techniquesen
dc.typeConference Publicationen
dc.relation.conferenceIGARSS 2013: IEEE International Geoscience and Remote Sensing Symposium - Building a Sustainable Earth through Remote Sensingen
dc.identifier.doi10.1109/IGARSS.2013.6721124en
dc.subject.keywordsGlobal Information Systemsen
dc.subject.keywordsEnvironmental Monitoringen
dc.subject.keywordsAgricultural Land Managementen
local.contributor.firstnameNivaen
local.contributor.firstnameDaviden
local.contributor.firstnameNicken
local.contributor.firstnameBrianen
local.subject.for2008070101 Agricultural Land Managementen
local.subject.for2008080606 Global Information Systemsen
local.subject.for2008050206 Environmental Monitoringen
local.subject.seo2008960910 Sparseland, Permanent Grassland and Arid Zone Land and Water Managementen
local.subject.seo2008839899 Environmentally Sustainable Animal Production not elsewhere classifieden
local.subject.seo2008830503 Live Animalsen
local.profile.schoolSchool of Humanities, Arts and Social Sciencesen
local.profile.schoolOffice of Faculty of Science, Agriculture, Business and Lawen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.schoolOffice of Faculty of Science, Agriculture, Business and Lawen
local.profile.emailnverma3@une.edu.auen
local.profile.emaildlamb@une.edu.auen
local.profile.emailnrei3@une.edu.auen
local.profile.emailbwilson7@une.edu.auen
local.output.categoryE1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.identifier.epublicationsrecordune-20130812-150916en
local.date.conference21st - 26th July, 2013en
local.conference.placeMelbourne, Australiaen
local.publisher.placeLos Alamitos, United States of Americaen
local.format.startpage192en
local.format.endpage195en
local.identifier.scopusid84894276073en
local.peerreviewedYesen
local.title.subtitleA Comparison of Image Processing Techniquesen
local.contributor.lastnameVermaen
local.contributor.lastnameLamben
local.contributor.lastnameReiden
local.contributor.lastnameWilsonen
dc.identifier.staffune-id:nverma3en
dc.identifier.staffune-id:dlamben
dc.identifier.staffune-id:nrei3en
dc.identifier.staffune-id:bwilson7en
local.profile.orcid0000-0002-4377-9734en
local.profile.orcid0000-0002-7983-0909en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:14426en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleTree Cover Extraction from 50 cm Worldview2 Imageryen
local.output.categorydescriptionE1 Refereed Scholarly Conference Publicationen
local.conference.detailsIGARSS 2013: IEEE International Geoscience and Remote Sensing Symposium - Building a Sustainable Earth through Remote Sensing, Melbourne, Australia, 21st - 26th July, 2013en
local.search.authorVerma, Nivaen
local.search.authorLamb, Daviden
local.search.authorReid, Nicken
local.search.authorWilson, Brianen
local.uneassociationUnknownen
local.year.published2013en
local.subject.for2020300202 Agricultural land managementen
local.subject.for2020460911 Inter-organisational, extra-organisational and global information systemsen
local.subject.for2020410599 Pollution and contamination not elsewhere classifieden
local.subject.seo2020100699 Primary products from animals not elsewhere classifieden
local.subject.seo2020180607 Terrestrial erosionen
local.date.start2013-07-21-
local.date.end2013-07-26-
Appears in Collections:Conference Publication
School of Environmental and Rural Science
Files in This Item:
3 files
File Description SizeFormat 
Show simple item record

SCOPUSTM   
Citations

1
checked on Oct 26, 2024

Page view(s)

1,728
checked on Jul 2, 2023
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.