Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/13629
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Du, Yihong | en |
dc.contributor.author | Guo, Zongming | en |
dc.contributor.author | Peng, Rui | en |
dc.date.accessioned | 2013-11-12T17:12:00Z | - |
dc.date.issued | 2013 | - |
dc.identifier.citation | Journal of Functional Analysis, 265(9), p. 2089-2142 | en |
dc.identifier.issn | 1096-0783 | en |
dc.identifier.issn | 0022-1236 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/13629 | - |
dc.description.abstract | We study the diffusive logistic equation with a free boundary in time-periodic environment. Such a model may be used to describe the spreading of a new or invasive species, with the free boundary representing the expanding front. For time independent environment, in the cases of one space dimension, and higher space dimensions with radial symmetry, this free boundary problem has been studied in Du and Lin (2010), Du and Guo (2011). In both cases, a spreading-vanishing dichotomy was established, and when spreading occurs, the asymptotic spreading speed was determined. In this paper, we show that the spreading-vanishing dichotomy is retained in time-periodic environment, and we also determine the spreading speed. The former is achieved by further developing the earlier techniques, and the latter is proved by introducing new ideas and methods. | en |
dc.language | en | en |
dc.publisher | Elsevier Inc | en |
dc.relation.ispartof | Journal of Functional Analysis | en |
dc.title | A diffusive logistic model with a free boundary in time-periodic environment | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1016/j.jfa.2013.07.016 | en |
dcterms.accessRights | Green | en |
dc.subject.keywords | Partial Differential Equations | en |
local.contributor.firstname | Yihong | en |
local.contributor.firstname | Zongming | en |
local.contributor.firstname | Rui | en |
local.subject.for2008 | 010110 Partial Differential Equations | en |
local.subject.seo2008 | 970101 Expanding Knowledge in the Mathematical Sciences | en |
local.profile.school | School of Science and Technology | en |
local.profile.school | Maths | en |
local.profile.email | ydu@une.edu.au | en |
local.profile.email | zguo3@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.identifier.epublicationsrecord | une-20131101-132333 | en |
local.publisher.place | United States of America | en |
local.format.startpage | 2089 | en |
local.format.endpage | 2142 | en |
local.identifier.scopusid | 84881375787 | en |
local.url.open | https://arxiv.org/pdf/1504.03958.pdf | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 265 | en |
local.identifier.issue | 9 | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | Du | en |
local.contributor.lastname | Guo | en |
local.contributor.lastname | Peng | en |
dc.identifier.staff | une-id:ydu | en |
dc.identifier.staff | une-id:zguo3 | en |
dc.identifier.staff | une-id:rpeng2 | en |
local.profile.orcid | 0000-0002-1235-0636 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:13841 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | A diffusive logistic model with a free boundary in time-periodic environment | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.relation.grantdescription | ARC/DP120100727 | en |
local.search.author | Du, Yihong | en |
local.search.author | Guo, Zongming | en |
local.search.author | Peng, Rui | en |
local.uneassociation | Unknown | en |
local.identifier.wosid | 000323093000011 | en |
local.year.published | 2013 | en |
local.subject.for2020 | 490410 Partial differential equations | en |
local.subject.seo2020 | 280118 Expanding knowledge in the mathematical sciences | en |
local.codeupdate.date | 2021-11-08T16:09:36.593 | en |
local.codeupdate.eperson | ydu@une.edu.au | en |
local.codeupdate.finalised | true | en |
local.original.for2020 | 490410 Partial differential equations | en |
local.original.seo2020 | 280118 Expanding knowledge in the mathematical sciences | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Description | Size | Format |
---|
SCOPUSTM
Citations
130
checked on Dec 14, 2024
Page view(s)
1,284
checked on Jun 23, 2024
Download(s)
2
checked on Jun 23, 2024
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.